34 research outputs found

    Toxicity and morbility after isolated lower limb perfusion in 242 chemo-hyperthermal treatments for cutaneous melanoma: The experience of the Tuscan Reference Centre

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this retrospective study was to assess the results concerning the regional and systemic toxicity and complications in 242 chemo-hyperthermal treatments (HILPs) for lower limb melanoma.</p> <p>Patients and methods</p> <p>60 HILPs (G-A) were performed with mild HT plus L-PAM (10 mg/lt) ± D-actimomycin; 74 HILPs (G-B) with true HT (40–41.8°C) plus L-PAM (10 mg/lt) ± D-act; 108 HILPs (G-C) with true HT plus L-PAM (10 mg/lt) ± D-act plus L-PAM (5 mg/lt) additional bolus.</p> <p>Results</p> <p>Limb toxicity was very low in G-A and in G-B; increasing toxicity (grade III = 37%) in G-C; no grade IV statistical difference was registered in all three groups, with percentage values among 1.6% and 2.7%. Systemic toxicity showed itself only in the haemopoietic parameters. No differences were registered in G-B vs G-A group. In G-C vs G-B a significative increase of systemic toxicity was seen in grade 3 (p < 0.05). Postoperative complications were acceptable. Local and systemic side-effects were transient; no permanent neurological limb deficit was registered. The postoperative mortality was recorded in 3/182 HILPs (1.6%) of the G-B and G-C groups.</p> <p>Conclusion</p> <p>These data suggested that the technical implementations reduced the occurrence and the severity of the side effects and complications. The essential requirement for HILP is the quality assurance of the procedures. Although higher regional and systemic toxicity were observed in the G-C group caused by L-PAM additional bolus, the safeness of the procedures under the true hyperthermal regimen and the time increase of the high L-PAM concentration have assured the treatment reliability along with the increased clinical efficacy expectations of the treatments.</p

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
    corecore