13 research outputs found

    Thin Film Magnesium Boride Superconductor with Very High Critical Current Density and Enhanced Irreversibility Field

    Full text link
    The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. With twice the critical temperature of Nb_3Sn and four times that of Nb-Ti alloy, MgB_2 has the potential to reach much higher fields and current densities than either of these technological superconductors. A vital prerequisite, strongly linked current flow, has already been demonstrated even at this early stage. One possible drawback is the observation that the field at which superconductivity is destroyed is modest. Further, the field which limits the range of practical applications, the irreversibility field H*(T), is ~7 T at liquid helium temperature (4.2 K), significantly lower than ~10 T for Nb-Ti and ~20 T for Nb_3Sn. Here we show that MgB_2 thin films can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding H*(4.2 K) above 14 T. In addition, very high critical current densities at 4.2 K, 1 MA/cm_2 at 1 T and 10_5 A/cm_2 at 10 T, are possible. These data demonstrate that MgB_2 has credible potential for high-field superconducting applications.Comment: 4 pages pdf, submitted to Nature 3/20/0

    Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-x AlxB2.

    No full text
    The basic magnetic and electronic properties of most binary compounds have been well known for decades. The recent discovery of superconductivity at 39 K in the simple binary ceramic compound magnesium diboride, MgB2, was therefore surprising. Indeed, this material has been known and structurally characterized since the mid 1950s (ref. 2), and is readily available from chemical suppliers (it is commonly used as a starting material for chemical metathesis reactions). Here we show that the addition of electrons to MgB2, through partial substitution of Al for Mg, results in the loss of superconductivity. Associated with the Al substitution is a subtle but distinct structural transition, reflected in the partial collapse of the spacing between boron layers near an Al content of 10 per cent. This indicates that superconducting MgB2 is poised very near a structural instability at slightly higher electron concentrations

    MgB2 energy gap determination by scanning tunnelling spectroscopy

    No full text
    We report scanning tunnelling spectroscopy (STS) measurements of the gap properties of both ceramic MgB2 and c-axis oriented epitaxial MgB2 thin films. Both show a temperature dependent zero bias conductance peak and evidence for two superconducting gaps. We report tunnelling spectroscopy of superconductor-insulator-superconductor (S-I-S) junctions formed in two ways in addition to normal metal-insulator-superconductor (N-I-S) junctions. We find a gap Δ = 2.2-2.8 meV, with spectral features and temperature dependence that are consistent between S-I-S junction types. In addition, we observe evidence of a second, larger gap, Δ = 7.2 meV, consistent with a proposed two-hand model
    corecore