3,331 research outputs found
A study on fire design accidental loads for aluminum safety helidecks
The helideck structure must satisfy the safety requirements associated with various environmental and accidental loads. Especially, there have been a number of fire accidents offshore due to helicopter collision (take-off and/or landing) in recent decades. To prevent further accidents, a substantial amount of effort has been directed toward the management of fire in the safety design of offshore helidecks. The aims of this study are to introduce and apply a procedure for quantitative risk assessment and management of fires by defining the fire loads with an applied example. The frequency of helicopter accidents are considered, and design accidental levels are applied. The proposed procedures for determining design fire loads can be efficiently applied in offshore helideck development projects
Temperature dependence of the electronic structure of the J(eff)=12 Mott insulator Sr2IrO4 studied by optical spectroscopy
We investigated the temperature-dependent evolution of the electronic structure of the J(eff)=1/2 Mott insulator Sr2IrO4 using optical spectroscopy. The optical conductivity spectra sigma(omega) of this compound has recently been found to exhibit two d-d transitions associated with the transition between the J(eff)=1/2 and J(eff)=3/2 bands due to the cooperation of the electron correlation and spin-orbit coupling. As the temperature increases, the two peaks show significant changes resulting in a decrease in the Mott gap. The experimental observations are compared with the results of first-principles calculation in consideration of increasing bandwidth. We discuss the effect of the temperature change in the electronic structure of Sr2IrO4 in terms of local lattice distortion, excitonic effect, electron-phonon coupling, and magnetic ordering.open69575
Representation of Bay of Bengal upper-ocean salinity in general circulation models
The Bay of Bengal (BoB) upper-ocean salinity is examined in the National Centers for Environmental Prediction-Climate Forecasting System version 2 (CFSv2) coupled model, Modular Ocean Model version 5 (MOM5), and Indian National Centre for Ocean Information Services Global Ocean Data Assimilation System (INC-GODAS). CFSv2 displays a large positive salinity bias with respect to World Ocean Atlas 2013 in the upper 40 m of the water column. The prescribed annual mean river discharge and excess evaporation are the main contributors to the positive bias in surface salinity. Overestimation of salinity advection also contributes to the high surface salinity in the model during summer. The surface salinity bias in MOM5 is smaller than in CFSv2 due to prescribed local freshwater flux and seasonally varying river discharge. However, the bias is higher around 70 m in summer and 40 m in fall. This bias is attributed to excessive vertical mixing in the upper ocean. Despite the fact that representation of salinity in INC-GODAS is more realistic due to data assimilation, the vertical mixing scheme still imposes systematic errors. The small-scale processes that control oceanographic turbulence are not adequately resolved in any of these models. Better parameterizations based on dedicated observational programs may help improve freshwater representation in regional and global models
Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal
A superconducting transition temperature (T-c) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced T-c from its bulk value of 8 K. There are two main views about the origin of the T-c enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate T-c of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum T-c, which in turn reveals the need for interfacial effects to achieve the highest T-c in one monolayer FeSe on SrTiO3.1116Ysciescopu
Erratum to: Sequential treatment for a patient with hemifacial microsomia: 10 year-long term follow up
Synergistic effects of longitudinal amyloid and vascular changes on lobar microbleeds
OBJECTIVE: To determine whether amyloid and hypertensive cerebral small vessel disease (hCSVD) changes synergistically affect the progression of lobar microbleeds in patients with subcortical vascular mild cognitive impairment (svMCI).
METHODS: Among 72 patients with svMCI who underwent brain MRI and [11C] Pittsburgh compound B (PiB)–PET, 52 (72.2%) completed the third year of follow-up. These patients were evaluated by annual neuropsychological testing, brain MRI, and follow-up PiB-PET.
RESULTS: Over 3 years, 31 of 52 patients (59.6%) had incident cerebral microbleeds (CMBs) in the lobar and deep regions. Both baseline and longitudinal changes in lacune numbers were associated with increased numbers of lobar and deep microbleeds, while baseline and longitudinal changes in PiB uptake ratio were associated only with the progression of lobar microbleeds, especially in the temporal, parietal, and occipital areas. Regional white matter hyperintensity severity was also associated with regional lobar CMBs in the parietal and occipital regions. There were interactive effects between baseline and longitudinal lacune number and PiB retention on lobar microbleed progression. Increased lobar, but not deep, CMBs were associated with decreased scores in the digit span backward task and Rey-Osterrieth Complex Figure Test.
CONCLUSIONS: Our findings suggest that amyloid-related pathology and hCSVD have synergistic effects on the progression of lobar microbleeds, providing new clinical insight into the interaction between amyloid burden and hCSVD on CMB progression and cognitive decline with implications for developing effective prevention strategies
Physical and immunological aspects of exercise in chronic diseases.
Physical inactivity and sedentary lifestyles are believed to be independent risk factors for the occurrence of numerous diseases, including, obesity, Type 2 diabetes, metabolic syndrome, cardiovascular disease, cancer and mental health, all leading to substantial morbidity and/or premature death. It has been found that regular exercise, is associated with better quality of life and health outcomes, and reduces the risk of cardiovascular disease and cancer. Here, we review the effects regular exercise has on mental health and well-being, on the immune system and in cancer, cardiovascular disease, autoimmunity and metabolic syndrome. Is exercise the new immunotherapy to treat diseases
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Control of magnetic anisotropy by orbital hybridization in (La0.67Sr0.33MnO3)n/(SrTiO3)n superlattice
The asymmetry of chemical nature at the hetero-structural interface offers an
unique opportunity to design desirable electronic structure by controlling
charge transfer and orbital hybridization across the interface. However, the
control of hetero-interface remains a daunting task. Here, we report the
modulation of interfacial coupling of (La0.67Sr0.33MnO3)n/(SrTiO3)n
superlattices by manipulating the periodic thickness with n unit cells of
SrTiO3 and n unit cells La0.67Sr0.33MnO3. The easy axis of magnetic anisotropy
rotates from in-plane (n = 10) to out-of-plane (n = 2) orientation at 150 K.
Transmission electron microscopy reveals enlarged tetragonal ratio > 1 with
breaking of volume conservation around the (La0.67Sr0.33MnO3)n/(SrTiO3)n
interface, and electronic charge transfer from Mn to Ti 3d orbitals across the
interface. Orbital hybridization accompanying the charge transfer results in
preferred occupancy of 3d3z2-r2 orbital at the interface, which induces a
stronger electronic hopping integral along the out-of-plane direction and
corresponding out-of-plane magnetic easy axis for n = 2. We demonstrate that
interfacial orbital hybridization in superlattices of strongly correlated
oxides may be a promising approach to tailor electronic and magnetic properties
in device applications
An Epigenetic Blockade of Cognitive Functions in the Neurodegenerating Brain
Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer’s disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer’s-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer’s disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade
- …
