29 research outputs found

    Comparison of airway measurements during influenza-induced tachypnea in infant and adult cotton rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased respiratory rate (tachypnea) is frequently observed as a clinical sign of influenza pneumonia in pediatric patients admitted to the hospital. We previously demonstrated that influenza infection of adult cotton rats (<it>Sigmodon hispidus</it>) also results in tachypnea and wanted to establish whether this clinical sign was observed in infected infant cotton rats. We hypothesized that age-dependent differences in lung mechanics result in differences in ventilatory characteristics following influenza infection.</p> <p>Methods</p> <p>Lung tidal volume, dynamic elastance, resistance, and pleural pressure were measured in a resistance and compliance system on mechanically-ventilated anesthestized young (14–28 day old) and adult (6–12 week old) cotton rats. Animals at the same age were infected with influenza virus, and breathing rates and other respiratory measurements were recorded using a whole body flow plethysmograph.</p> <p>Results</p> <p>Adult cotton rats had significantly greater tidal volume (TV), and lower resistance and elastance than young animals. To evaluate the impact of this increased lung capacity and stiffening on respiratory disease, young and adult animals were infected intra-nasally with influenza A/Wuhan/359/95. Both age groups had increased respiratory rate and enhanced pause (<it>Penh</it>) during infection, suggesting lower airway obstruction. However, in spite of significant tachypnea, the infant (unlike the adult) cotton rats maintained the same tidal volume, resulting in an increased minute volume. In addition, the parameters that contribute to <it>Penh </it>were different: while relaxation time between breaths and time of expiration was decreased in both age groups, a disproportionate increase in peak inspiratory and expiratory flow contributed to the increase in <it>Penh </it>in infant animals.</p> <p>Conclusion</p> <p>While respiratory rate is increased in both adult and infant influenza-infected cotton rats, the volume of air exchanged per minute (minute volume) is increased in the infant animals only. This is likely to be a consequence of greater lung elastance in the very young animals. This model replicates many respiratory features of humans and consequently may be a useful tool to investigate new strategies to treat respiratory disease in influenza-infected infants.</p

    Effects of multidisciplinary teamwork on lead times and patient flow in the emergency department: A longitudinal interventional cohort study

    Get PDF
    BACKGROUND Long waiting times for emergency care are claimed to be caused by overcrowded emergency departments and non-effective working routines. Teamwork has been suggested as a promising solution to these issues. The aim of the present study was to investigate the effects of teamwork in a Swedish emergency department on lead times and patient flow. METHODS The study was set in an emergency department of a university hospital where teamwork, a multi-professional team responsible for the whole care process for a group of patients, was introduced. The study has a longitudinal non-randomized intervention study design. Data were collected for five two-week periods during a period of 1.5 years. The first part of the data collection used an ABAB design whereby standard procedure (A) was altered weekly with teamwork (B). Then, three follow-ups were conducted. At last follow-up, teamwork was permanently implemented. The outcome measures were: number of patients handled within teamwork time, time to physician, total visit time and number of patients handled within the 4-hour target. RESULTS A total of 1,838 patient visits were studied. The effect on lead times was only evident at the last follow-up. Findings showed that the number of patients handled within teamwork time was almost equal between the different study periods. At the last follow-up, the median time to physician was significantly decreased by 11 minutes (p = 0.0005) compared to the control phase and the total visit time was significantly shorter at last follow-up compared to control phase (p = <0.0001; 39 minutes shorter on average). Finally, the 4-hour target was met in 71% in the last follow-up compared to 59% in the control phase (p = 0.0005). CONCLUSIONS Teamwork seems to contribute to the quality improvement of emergency care in terms of small but significant decreases in lead times. However, although efficient work processes such as teamwork are necessary to ensure safe patient care, it is likely not sufficient for bringing about larger decreases in lead times or for meeting the 4-hour target in the emergency department.Åsa Muntlin Athlin, Ulrica von Thiele Schwarz and Nasim Farrohkni
    corecore