17 research outputs found

    Longitudinal In Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice

    Get PDF
    Retinal ganglion cells (RGCs) die in sight-threatening eye diseases. Imaging RGCs in humans is not currently possible and proof of principle in experimental models is fundamental for future development. Our objective was to quantify RGC density and retinal thickness following optic nerve transection in transgenic mice expressing cyan fluorescent protein (CFP) under control of the Thy1 promoter, expressed by RGCs and other neurons.A modified confocal scanning laser ophthalmoscopy (CSLO)/spectral-domain optical coherence tomography (SD-OCT) camera was used to image and quantify CFP+ cells in mice from the B6.Cg-Tg(Thy1-CFP)23Jrs/J line. SD-OCT circle (1 B-scan), raster (37 B-scans) and radial (24 B-scans) scans of the retina were also obtained. CSLO was performed at baseline (n = 11) and 3 (n = 11), 5 (n = 4), 7 (n = 10), 10 (n = 6), 14 (n = 7) and 21 (n = 5) days post-transection, while SD-OCT was performed at baseline and 7, 14 and 35 days (n = 9) post-transection. Longitudinal change in CFP+ cell density and retinal thickness were computed. Compared to baseline, the mean (SD) percentage CFP+ cells remaining at 3, 5, 7, 10, 14 and 21 days post-transection was 86 (9)%, 63 (11)%, 45 (11)%, 31 (9)%, 20 (9)% and 8 (4)%, respectively. Compared to baseline, the mean (SD) retinal thickness at 7 days post-transection was 97 (3)%, 98 (2)% and 97 (4)% for the circle, raster and radial scans, respectively. The corresponding figures at 14 and 35 days post-transection were 96 (3)%, 97 (2)% and 95 (3)%; and 93 (3)%, 94 (3)% and 92 (3)%.Longitudinal imaging showed an exponential decline in CFP+ cell density and a small (≤8%) reduction in SD-OCT measured retinal thickness post-transection. SD-OCT is a promising tool for detecting structural changes in experimental optic neuropathy. These results represent an important step towards translation for clinical use

    Red blood cell complement receptor one level varies with Knops blood group, α(+)thalassaemia and age among Kenyan children

    Get PDF
    Both the invasion of red blood cells (RBCs) by Plasmodium falciparum parasites and the sequestration of parasite-infected RBCs in the microvasculature are mediated in part by complement receptor one (CR1). RBC surface CR1 level can vary between individuals by more than 20-fold and may be associated with the risk of severe malaria. The factors that influence RBC CR1 level variation are poorly understood, particularly in African populations. We studied 3535 child residents of a malaria-endemic region of coastal Kenya and report, for the first time, that the CR1 Knops blood group alleles Sl2 and McC(b), and homozygous HbSS are positively associated with RBC CR1 level. Sickle cell trait and ABO blood group did not influence RBC CR1 level. We also confirm the previous observation that α(+)thalassaemia is associated with reduced RBC CR1 level, possibly due to small RBC volume, and that age-related changes in RBC CR1 expression occur throughout childhood. RBC CR1 level in malaria-endemic African populations is a complex phenotype influenced by multiple factors that should be taken into account in the design and interpretation of future studies on CR1 and malaria susceptibility

    Cost containment in obstetric analgesia

    No full text

    Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: comparison of four promoters.

    Get PDF
    Funder: This research was funded by a Nathalie Rose Barr award (NRB110) from the International Spinal Research Trust, and support from Medical Research Council (MR/R004544/1 & MR/R004463/1), NWO (013-16-002), Czech Ministry of Education (CZ.02.1.01/0.0./0.0/15_003/0000419), ERA-NET NEURON AxonRepair, Christopher and Dana Reeve Foundation, International Foundation for Research in Paraplegia, Hersenstichting Nederland.Adeno-associated viral vectors are widely used as vehicles for gene transfer to the nervous system. The promoter and viral vector serotype are two key factors that determine the expression dynamics of the transgene. A previous comparative study has demonstrated that AAV1 displays efficient transduction of layer V corticospinal neurons, but the optimal promoter for transgene expression in corticospinal neurons has not been determined yet. In this paper, we report a side-by-side comparison between four commonly used promoters: the short CMV early enhancer/chicken β actin (sCAG), human cytomegalovirus (hCMV), mouse phosphoglycerate kinase (mPGK) and human synapsin (hSYN) promoter. Reporter constructs with each of these promoters were packaged in AAV1, and were injected in the sensorimotor cortex of rats and mice in order to transduce the corticospinal tract. Transgene expression levels and the cellular transduction profile were examined after 6 weeks. The AAV1 vectors harbouring the hCMV and sCAG promoters resulted in transgene expression in neurons, astrocytes and oligodendrocytes. The mPGK and hSYN promoters directed the strongest transgene expression. The mPGK promoter did drive expression in cortical neurons and oligodendrocytes, while transduction with AAV harbouring the hSYN promoter resulted in neuron-specific expression, including perineuronal net expressing interneurons and layer V corticospinal neurons. This promoter comparison study contributes to improve transgene delivery into the brain and spinal cord. The optimized transduction of the corticospinal tract will be beneficial for spinal cord injury research
    corecore