8 research outputs found

    Quantifying crystal form content in physical mixtures of (±)-tartaric acid and (+)-tartaric acid using near infrared reflectance spectroscopy

    No full text
    The objective of this study was to use diffuse reflectance near infrared spectroscopy (NIRS) to determine racemic compound content in physical mixtures composed primarily of the enantiomorph and to assess the error, instrument reproducibility and limits of detection (LOD) and quantification (LOQ) of the method. Physical mixtures ranging from 0 to 25% (±)-tartaric acid in (+)-tartaric acid were prepared and spectra of the powder samples contained in glass vials were obtained using a Foss NIRSystems Model 5000 monochrometer equipped with a Rapid Content Analyzer scanning from 1100 to 2500 nm. A calibration curve was constructed by plotting (±)-tartaric acid weight percent against the 2nd derivative values of log (1/R) vs λ at a single wavelength, normalized with a denominator wavelength (1480 nm/1280 nm). Excellent linearity was observed (R2=0.9999). The standard error of calibration (SEC) was 0.07 and the standard error of prediction (SEP) for the validation set was 0.11. Instrument and method errors for samples in the 2% composition range ((±)-tartaric acid in (+)-tartaric acid) were less than 1% RSD and 3% RSD, respectively. The practical LOD and LOQ were 0.1% and 0.5%, respectively, and comparable to the calculated LOD and LOQ. These studies show that NIRS can be used as a rapid and sensitive quantitative method for determining racemate content in the presence of the enatiomerically pure crystal in the solid-state

    Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect

    No full text
    Metronomic chemotherapy describes the close, regular administration of chemotherapy drugs at less-toxic doses over prolonged periods of time. In 2015, the results of randomized phase III clinical trials demonstrated encouraging, albeit limited, efficacy benefits of metronomic chemotherapy regimens administered as adjuvant maintenance therapy for the treatment of breast cancer, or as maintenance therapy in combination with an antiangiogenic agent for metastatic colorectal cancer. Owing to the investigational nature of this approach, metronomic chemotherapy regimens are highly empirical in terms of the optimal dose and schedule for the drugs administered; therefore, greater knowledge of the pharmacokinetics of metronomic chemotherapy is critical to the future success of this treatment strategy. Unfortunately, such preclinical and clinical pharmacokinetic studies are rare. Herein, we present situations in which active drug concentrations have been achieved with metronomic schedules, and discuss their associated pharmacokinetic parameters. We summarize examples from the limited number of clinical studies in order to illustrate the importance of assessing such pharmacokinetic parameters, and discuss the influence this information can have on improving efficacy and reducing toxicity

    Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect

    No full text
    corecore