179 research outputs found

    A distance-limited sample of massive molecular outflows

    Get PDF
    We have observed 99 mid-infrared-bright, massive young stellar objects and compact H ii regions drawn from the Red MSX source survey in the J = 3−2 transition of 12CO and 13CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 per cent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic time-scale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation, we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to ∼30 M⊙ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of ∼10−3 M⊙ yr−1 on to the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores

    The Red MSX Source Survey: The Massive Young Stellar Population of Our Galaxy

    Get PDF
    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores

    Distant X-ray Galaxies: Insights from the Local Population

    Full text link
    A full understanding of the origin of the hard X-ray background requires a complete and accurate census of the distant galaxies that produce it. Unfortunately, distant X-ray galaxies tend to be very faint at all wavelengths, which hinders efforts to perform this census. This chapter discusses the insights that can be obtained through comparison of the distant population to local X-ray galaxies, whose properties are well characterized. Such comparisons will ultimately aid investigations into the cosmic evolution of supermassive black holes and their environments.Comment: 19 pages, 10 figures, to appear as Chapter 7 in "Supermassive Black Holes in the Distant Universe" (2004), ed. A. J. Barger, Kluwer Academic Publishers, in pres

    ATLASGAL - towards a complete sample of massive star forming clumps

    Get PDF
    By matching infrared-selected, massive young stellar objects (MYSOs) and compact HII regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ~1000 embedded young massive stars between 280 {ring operator} < l < 350 {ring operator} and 10 {ring operator} < l < 60 {ring operator} with | b | < 1 {ring operator} . 5. Combined with an existing sample of radio-selected methanol masers and compact HII regions, the result is a catalogue of ~1700 massive stars embedded within ~1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and HII-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which suggests that the structure of a clump is set before the onset of star formation, and changes little as the embedded object evolves towards the main sequence. There is a strong linear correlation between clump mass and bolometric luminosity, with the most massive stars forming in the most massive clumps. We find that the MYSO and HII-region subsamples are likely to cover a similar range of evolutionary stages and that the majority are near the end of their main accretion phase. We find few infrared-bright MYSOs associated with the most massive clumps, probably due to very short pre-main-sequence lifetimes in the most luminous sources. © 2014 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society

    ATLASGAL - properties of compact H II regions and their natal clumps

    Get PDF
    We present a complete sample of molecular clumps containing compact and ultracompact HII (UC HII) regions between ℓ = 10° and 60° and |b| < 1°, identified by combining the APEX Telescope Large Area Survey ofthe Galaxy submm and CORNISH radio continuum surveys with visual examination ofarchival infrared data. Our sample is complete to optically thin, compact and UC HII regions driven by a zero-age main-sequence star of spectral type B0 or earlier embedded within a 1000M clump. In total we identify 213 compact and UC HII regions, associated with 170 clumps. Unambiguous kinematic distances are derived for these clumps and used to estimate their masses and physical sizes, as well as the Lyman continuum fluxes and sizes of their embedded HII regions. We find a clear lower envelope for the surface density of molecular clumps hosting massive star formation of 0.05 g cm, which is consistent with a similar sample of clumps associated with 6.7 GHz masers. The mass of the most massive embedded starsis closely correlated with the mass of their natal clump. Young B stars appearto be significantly more luminous in the ultraviolet than predicted by current stellar atmosphere models. The properties of clumps associated with compact and UC HII regions are very similar to those associated with 6.7 GHz methanol masers and we speculate that there is little evolution in the structure of the molecular clumps between these two phases. Finally, we identifya significant peak in the surface density of compact and UC HII-regions associated with the W49A star-forming complex, noting that this complex is truly one of the most massive and intense regions of star formation in the Galaxy. © 2013 The Authors, Published by Oxford University Press on behalf of the Royal Astronomical Society

    From clump to disc scales in W3 IRS4 A case study of the IRAM NOEMA large programme CORE

    Get PDF
    Context. High-mass star formation typically takes place in a crowded environment, with a higher likelihood of young forming stars affecting and being affected by their surroundings and neighbours, as well as links between different physical scales affecting the outcome. However, observational studies are often focused on either clump or disc scales exclusively. Aims. We explore the physical and chemical links between clump and disc scales in the high-mass star formation region W3 IRS4, a region that contains a number of different evolutionary phases in the high-mass star formation process, as a case-study for what can be achieved as part of the IRAM NOrthern Extended Millimeter Array (NOEMA) large programme named CORE: “Fragmentation and disc formation in high-mass star formation”. Methods. We present 1.4 mm continuum and molecular line observations with the IRAM NOEMA interferometer and 30 m telescope, which together probe spatial scales from ~0.3−20′′ (600−40 000 AU or 0.003−0.2 pc at 2 kpc, the distance to W3). As part of our analysis, we used XCLASS to constrain the temperature, column density, velocity, and line-width of the molecular emission lines. Results. The W3 IRS4 region includes a cold filament and cold cores, a massive young stellar object (MYSO) embedded in a hot core, and a more evolved ultra-compact (UC)H II region, with some degree of interaction between all components of the region that affects their evolution. A large velocity gradient is seen in the filament, suggesting infall of material towards the hot core at a rate of 10−3−10−4 M⊙ yr−1, while the swept up gas ring in the photodissociation region around the UCH II region may be squeezing the hot core from the other side. There are no clear indications of a disc around the MYSO down to the resolution of the observations (600 AU). A total of 21 molecules are detected, with the abundances and abundance ratios indicating that many molecules were formed in the ice mantles of dust grains at cooler temperatures, below the freeze-out temperature of CO (≲35 K). This contrasts with the current bulk temperature of ~50 K, which was obtained from H2CO. Conclusions. CORE observations allow us to comprehensively link the different structures in the W3 IRS4 region for the first time. Our results argue that the dynamics and environment around the MYSO W3 IRS4 have a significant impact on its evolution. This context would be missing if only high resolution or continuum observations were available

    Core fragmentation and Toomre stability analysis of W3(H2O): A case study of the IRAM NOEMA large program CORE

    Get PDF
    The fragmentation mode of high-mass molecular clumps and the properties of the central rotating structures surrounding the most luminous objects have yet to be comprehensively characterised. Using the IRAM NOrthern Extended Millimeter Array (NOEMA) and the IRAM 30-m telescope, the CORE survey has obtained high-resolution observations of 20 well-known highly luminous star-forming regions in the 1.37 mm wavelength regime in both line and dust continuum emission. We present the spectral line setup of the CORE survey and a case study for W3(H2O). At ~0.35" (700 AU at 2 kpc) resolution, the W3(H2O) clump fragments into two cores (West and East), separated by ~2300 AU. Velocity shifts of a few km/s are observed in the dense-gas tracer, CH3CN, across both cores, consistent with rotation and perpendicular to the directions of two bipolar outflows, one emanating from each core. The kinematics of the rotating structure about W3(H2O) W shows signs of differential rotation of material, possibly in a disk-like object. The observed rotational signature around W3(H2O) E may be due to a disk-like object, an unresolved binary (or multiple) system, or a combination of both. We fit the emission of CH3CN (12-11) K = 4-6 and derive a gas temperature map with a median temperature of ~165 K across W3(H2O). We create a Toomre Q map to study the stability of the rotating structures against gravitational instability. The rotating structures appear to be Toomre unstable close to their outer boundaries, with a possibility of further fragmentation in the differentially-rotating core W3(H2O) W. Rapid cooling in the Toomre-unstable regions supports the fragmentation scenario. Combining millimeter dust continuum and spectral line data toward the famous high-mass star-forming region W3(H2O), we identify core fragmentation on large scales, and indications for possible disk fragmentation on smaller spatial scales

    Hoxb1 Controls Anteroposterior Identity of Vestibular Projection Neurons

    Get PDF
    The vestibular nuclear complex (VNC) consists of a collection of sensory relay nuclei that integrates and relays information essential for coordination of eye movements, balance, and posture. Spanning the majority of the hindbrain alar plate, the rhombomere (r) origin and projection pattern of the VNC have been characterized in descriptive works using neuroanatomical tracing. However, neither the molecular identity nor developmental regulation of individual nucleus of the VNC has been determined. To begin to address this issue, we found that Hoxb1 is required for the anterior-posterior (AP) identity of precursors that contribute to the lateral vestibular nucleus (LVN). Using a gene-targeted Hoxb1-GFP reporter in the mouse, we show that the LVN precursors originate exclusively from r4 and project to the spinal cord in the stereotypic pattern of the lateral vestibulospinal tract that provides input into spinal motoneurons driving extensor muscles of the limb. The r4-derived LVN precursors express the transcription factors Phox2a and Lbx1, and the glutamatergic marker Vglut2, which together defines them as dB2 neurons. Loss of Hoxb1 function does not alter the glutamatergic phenotype of dB2 neurons, but alters their stereotyped spinal cord projection. Moreover, at the expense of Phox2a, the glutamatergic determinants Lmx1b and Tlx3 were ectopically expressed by dB2 neurons. Our study suggests that the Hox genes determine the AP identity and diversity of vestibular precursors, including their output target, by coordinating the expression of neurotransmitter determinant and target selection properties along the AP axis

    Fragmentation and disk formation during high-mass star formation: The IRAM NOEMA (Northern Extended Millimeter Array) large program CORE

    Get PDF
    Aims: We aim to understand the fragmentation as well as the disk formation, outflow generation and chemical processes during high-mass star formation on spatial scales of individual cores. Methods: Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30m telescope, we have observed in the IRAM large program CORE the 1.37mm continuum and spectral line emission at high angular resolution (~0.4'') for a sample of 20 well-known high-mass star-forming regions with distances below 5.5kpc and luminosities larger than 10^4Lsun. Results: We present the overall survey scope, the selected sample, the observational setup and the main goals of CORE. Scientifically, we concentrate on the mm continuum emission on scales on the order of 1000AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented versus singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths. Conclusions: The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation

    The JCMT Plane Survey: early results from the l = 30 degree field

    Get PDF
    We present early results from the JCMT Plane Survey (JPS), which has surveyed the northern inner Galactic plane between longitudes l=7 and l=63 degrees in the 850-{\mu}m continuum with SCUBA-2, as part of the James Clerk Maxwell Telescope Legacy Survey programme. Data from the l=30 degree survey region, which contains the massive star-forming regions W43 and G29.96, are analysed after approximately 40% of the observations had been completed. The pixel-to-pixel noise is found to be 19 mJy/beam, after a smooth over the beam area, and the projected equivalent noise levels in the final survey are expected to be around 10 mJy/beam. An initial extraction of compact sources was performed using the FellWalker method resulting in the detection of 1029 sources above a 5-{\sigma} surface-brightness threshold. The completeness limits in these data are estimated to be around 0.2 Jy/beam (peak flux density) and 0.8 Jy (integrated flux density) and are therefore probably already dominated by source confusion in this relatively crowded section of the survey. The flux densities of extracted compact sources are consistent with those of matching detections in the shallower ATLASGAL survey. We analyse the virial and evolutionary state of the detected clumps in the W43 star-forming complex and find that they appear younger than the Galactic-plane average
    corecore