624 research outputs found
How COVID-19 CHANGED NEW NURSE ORIENTATION
Universities were no longer able to do in person learning for nursing students. Nursing students were being taught vital skills like inserting an IV catheter via online simulation. The number of hours nursing students had to participate in clinical hours at the hospital was diminished due to the hospitals not allowing in nursing students. This created a huge educational deficit in nursing students. The nursing students who graduated during the COVID-19 pandemic are arguably less skilled than their predecessors before them. To fill this educational gap, additional training and orientation time must be provided to allow for fully competent new graduate hires. Allowing more preparation for new graduates will reduce errors thus reducing hospital costs
A Fuzzy-logic Based Energy-efficient Clustering Algorithm for the Wireless Sensor Networks
The clustering strategy is one of the most promising schemes to reduce the energy consumption since the power constraint still remains as a bottleneck for the Wireless Sensor Networks (WSNs). Though the energy efficiency has been improved, most of them result in too much computational expense. The fuzzy-logic based clustering algorithm outperforms others owing to its superiority in imitating the human's decision making and its ability in transforming multiple inputs into a single output. A Fuzzy-Logic based Energy-Efficient Clustering algorithm (FLEEC) is proposed in this paper. A two-level fuzzy logic system is designed to balance the energy consumption and relieve the “hot spot problem” In the first level, the Sink determines the communication radius for all the sensor nodes according to the fuzzy inputs of the Node-Density and the Distance-to-Sink. The probability to be the cluster head is calculated locally in the second level basing on the descriptors of the Residual-Energy and the Total-Distance generated in the first level. Finally, extensive experiments are conducted and the performance of FLEEC is evaluated. It is proved to be more energy efficient than other clustering schemes such as LEACH and EFCH through the results comaprison
Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection
Purpose: To develop a new three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) data analysis method using a machine learning technique based on variable-size super pixel segmentation that efficiently utilizes full 3D dataset to improve the discrimination between early glaucomatous and healthy eyes. Methods: 192 eyes of 96 subjects (44 healthy, 59 glaucoma suspect and 89 glaucomatous eyes) were scanned with SD-OCT. Each SD-OCT cube dataset was first converted into 2D feature map based on retinal nerve fiber layer (RNFL) segmentation and then divided into various number of super pixels. Unlike the conventional super pixel having a fixed number of points, this newly developed variable-size super pixel is defined as a cluster of homogeneous adjacent pixels with variable size, shape and number. Features of super pixel map were extracted and used as inputs to machine classifier (LogitBoost adaptive boosting) to automatically identify diseased eyes. For discriminating performance assessment, area under the curve (AUC) of the receiver operating characteristics of the machine classifier outputs were compared with the conventional circumpapillary RNFL (cpRNFL) thickness measurements. Results: The super pixel analysis showed statistically significantly higher AUC than the cpRNFL (0.855 vs. 0.707, respectively, p = 0.031, Jackknife test) when glaucoma suspects were discriminated from healthy, while no significant difference was found when confirmed glaucoma eyes were discriminated from healthy eyes. Conclusions: A novel 3D OCT analysis technique performed at least as well as the cpRNFL in glaucoma discrimination and even better at glaucoma suspect discrimination. This new method has the potential to improve early detection of glaucomatous damage. © 2013 Xu et al
Instrumented fusion of thoracolumbar fracture with type I mineralized collagen matrix combined with autogenous bone marrow as a bone graft substitute: a four-case report
In order to avoid the morbidity from autogenous bone harvesting, bone graft substitutes are being used more frequently in spinal surgery. There is indirect radiological evidence that bone graft substitutes are efficacious in humans. The purpose of this four-case study was to visually, manually, and histologically assess the quality of a fusion mass produced by a collagen hydroxyapatite scaffold impregnated with autologous bone marrow aspirate for posterolateral fusion. Four patients sustained an acute thoracolumbar fracture and were treated by short posterior segment fusion using the AO fixateur interne. Autologous bone marrow (iliac crest) impregnated hydroxyapatite-collagen scaffold was laid on the decorticated posterior elements. Routine implant removal was performed after a mean of 15.3 months (12–20). During this second surgery, fusion mass was assessed visually and manually. A bone biopsy was sent for histological analysis of all four cases. Fusion was confirmed in all four patients intraoperatively and sagittal stress testing confirmed mechanical adequacy of the fusion mass. Three out of the four (cases 2–4) had their implants removed between 12 and 15 months after the index surgery. All their histological cuts showed evidence of newly formed bone and presence of active membranous and/or enchondral ossification foci. The last patient (case 1) underwent implant removal at 20 months and his histological cuts showed mature bone, but no active ossification foci. This four-case report suggests that the fusion mass produced by a mineralized collagen matrix graft soaked in aspirated bone marrow is histologically and mechanically adequate in a thoracolumbar fracture model. A larger patient series and/or randomized controlled studies are warranted to confirm these initial results
Congenital bovine spinal dysmyelination is caused by a missense mutation in the SPAST gene
Bovine spinal dysmyelination (BSD) is a recessive congenital neurodegenerative disease in cattle (Bos taurus) characterized by pathological changes of the myelin sheaths in the spinal cord. The occurrence of BSD is a longstanding problem in the American Brown Swiss (ABS) breed and in several European cattle breeds upgraded with ABS. Here, we show that the disease locus on bovine chromosome 11 harbors the SPAST gene that, when mutated, is responsible for the human disorder hereditary spastic paraplegia (HSP). Initially, SPAST encoding Spastin was considered a less likely candidate gene for BSD since the modes of inheritance as well as the time of onset and severity of symptoms differ widely between HSP and BSD. However, sequence analysis of the bovine SPAST gene in affected animals identified a R560Q substitution at a position in the ATPase domain of the Spastin protein that is invariant from insects to mammals. Interestingly, three different mutations in human SPAST gene at the equivalent position are known to cause HSP. To explore this observation further, we genotyped more than 3,100 animals of various cattle breeds and found that the glutamine allele exclusively occurred in breeds upgraded with ABS. Furthermore, all confirmed BSD carriers were heterozygous, while all affected calves were homozygous for the glutamine allele consistent with recessive transmission of the underlying mutation and complete penetrance in the homozygous state. Subsequent analysis of recombinant Spastin in vitro showed that the R560Q substitution severely impaired the ATPase activity, demonstrating a causal relationship between the SPAST mutation and BSD
Correlates of comorbid anxiety and externalizing disorders in childhood obsessive compulsive disorder
The present study examines the influence of diagnostic comorbidity on the demographic, psychiatric, and functional status of youth with a primary diagnosis of obsessive compulsive disorder (OCD). Two hundred and fifteen children (ages 5–17) referred to a university-based OCD specialty clinic were compared based on DSM-IV diagnostic profile: OCD without comorbid anxiety or externalizing disorder, OCD plus anxiety disorder, and OCD plus externalizing disorder. No age or gender differences were found across groups. Higher OCD severity was found for the OCD + ANX group, while the OCD + EXT group reported greater functional impairment than the other two groups. Lower family cohesion was reported by the OCD + EXT group compared to the OCD group and the OCD + ANX group reported higher family conflict compared to the OCD + EXT group. The OCD + ANX group had significantly lower rates of tic disorders while rates of depressive disorders did not differ among the three groups. The presence of comorbid anxiety and externalizing psychopathology are associated with greater symptom severity and functional and family impairment and underscores the importance of a better understanding of the relationship of OCD characteristics and associated disorders. Results and clinical implications are further discussed
A Multitrait–Multimethod Analysis of the Construct Validity of Child Anxiety Disorders in a Clinical Sample
The present study examines the construct validity of separation anxiety disorder (SAD), social phobia (SoP), panic disorder (PD), and generalized anxiety disorder (GAD) in a clinical sample of children. Participants were 174 children, 6 to 17 years old (94 boys) who had undergone a diagnostic evaluation at a university hospital based clinic. Parent and child ratings of symptom severity were assessed using the Multidimensional Anxiety Scale for Children (MASC). Diagnostician ratings were obtained from the Anxiety Disorders Interview Schedule for Children and Parents (ADIS: C/P). Discriminant and convergent validity were assessed using confirmatory factor analytic techniques to test a multitrait–multimethod model. Confirmatory factor analyses supported the current classification of these child anxiety disorders. The disorders demonstrated statistical independence from each other (discriminant validity of traits), the model fit better when the anxiety syndromes were specified than when no specific syndromes were specified (convergent validity), and the methods of assessment yielded distinguishable, unique types of information about child anxiety (discriminant validity of methods). Using a multi-informant approach, these findings support the distinctions between childhood anxiety disorders as delineated in the current classification system, suggesting that disagreement between informants in psychometric studies of child anxiety measures is not due to poor construct validity of these anxiety syndromes
Human Platelet-Rich Plasma- and Extracellular Matrix-Derived Peptides Promote Impaired Cutaneous Wound Healing In Vivo
Previous work in our laboratory has described several pro-angiogenic short peptides derived from endothelial extracellular matrices degraded by bacterial collagenase. Here we tested whether these peptides could stimulate wound healing in vivo. Our experiments demonstrated that a peptide created as combination of fragments of tenascin X and fibrillin 1 (comb1) applied into cranial dermal wounds created in mice treated with cyclophosphamide to impair wound healing, can improve the rate of wound closure. Furthermore, we identify and characterize a novel peptide (UN3) created and modified from two naturally-occurring peptides, which are present in human platelet-rich plasma. In vitro testing of UN3 demonstrates that it causes a 50% increase in endothelial proliferation, 250% increase in angiogenic response and a tripling of epithelial cell migration in response to injury. Results of in vivo experiments where comb1 and UN3 peptides were added together to cranial wounds in cyclophosphamide-treated mice leads to improvement of wound vascularization as shown by an increase of the number of blood vessels present in the wound beds. Application of the peptides markedly promotes cellular responses to injury and essentially restores wound healing dynamics to those of normal, acute wounds in the absence of cyclophosphamide impairment. Our current work is aimed at understanding the mechanisms underlying the stimulatory effects of these peptides as well as identification of the cellular receptors mediating these effects.National Institutes of Health (U.S.) (Grant EY15125)National Institutes of Health (U.S.) (Grant EY19533)Wound Care Partners, LL
- …