2,638 research outputs found

    A complete sample of quasars from the 7C redshift survey

    Get PDF
    We present details of a new sample of radio-loud quasars drawn from 0.013 sr of the 7C Redshift Survey. This sample is small (21 quasars) but complete in that every object with an unresolved nucleus and/or broad emission lines with S(151MHz) > 0.5 Jy has been discovered. The dependence of the quasar fraction with redshift and radio luminosity is investigated, providing new evidence supporting the unification of radio-loud quasars and powerful radio galaxies. This 7C sample is compared with optically-selected quasars, in order to determine whether there are systematic biases in the different selection techniques. There are no lightly reddened (Av approx. 1) quasars in our sample amongst the 14 with z < 2. The discovery of a reddened quasar at z = 2.034 and its implications are discussed. A tight correlation between radio luminosity and optical/near infrared continuum luminosity for a subset of the sample is also found.Comment: 6 pages Latex, To appear in the "Cosmology with the New Radio Surveys" Conference - Tenerife 13-15 January 199

    Response of bacterioplankton community structures to hydrological conditions and anthropogenic pollution in contrasting subtropical environments

    Get PDF
    Bacterioplankton community structures under contrasting subtropical marine environments (Hong Kong waters) were analyzed using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of predominant bands for samples collected bimonthly from 2004 to 2006 at five stations. Generally, bacterial abundance was significantly higher in the summer than in the winter. The general seasonal variations of the bacterial community structure, as indicated by cluster analysis of the DGGE pattern, were best correlated with temperature at most stations, except for the station close to a sewage discharge outfall, which was best explained by pollution-indicating parameters (e.g. biochemical oxygen demand). Anthropogenic pollutions appear to have affected the presence and the intensity of DGGE bands at the stations receiving discharge of primarily treated sewage. The relative abundance of major bacterial species, calculated by the relative intensity of DGGE bands after PCR amplification, also indicated the effects of hydrological or seasonal variations and sewage discharges. For the first time, a systematic molecular fingerprinting analysis of the bacterioplankton community composition was carried out along the environmental and pollution gradient in a subtropical marine environment, and it suggests that hydrological conditions and anthropogenic pollutions altered the total bacterial community as well as the dominant bacterial groups. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.published_or_final_versio

    Global organization of metabolic fluxes in the bacterium, Escherichia coli

    Full text link
    Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalyzed biochemical reactions, is the most investigated complex intercellular web of molecular interactions. While the topological organization of individual reactions into metabolic networks is increasingly well understood, the principles governing their global functional utilization under different growth conditions pose many open questions. We implement a flux balance analysis of the E. coli MG1655 metabolism, finding that the network utilization is highly uneven: while most metabolic reactions have small fluxes, the metabolism's activity is dominated by several reactions with very high fluxes. E. coli responds to changes in growth conditions by reorganizing the rates of selected fluxes predominantly within this high flux backbone. The identified behavior likely represents a universal feature of metabolic activity in all cells, with potential implications to metabolic engineering.Comment: 15 pages 4 figure

    Single Image Super-Resolution Using Lightweight CNN with Maxout Units

    Full text link
    Rectified linear units (ReLU) are well-known to be helpful in obtaining faster convergence and thus higher performance for many deep-learning-based applications. However, networks with ReLU tend to perform poorly when the number of filter parameters is constrained to a small number. To overcome it, in this paper, we propose a novel network utilizing maxout units (MU), and show its effectiveness on super-resolution (SR) applications. In general, the MU has been known to make the filter sizes doubled in generating the feature maps of the same sizes in classification problems. In this paper, we first reveal that the MU can even make the filter sizes halved in restoration problems thus leading to compaction of the network sizes. To show this, our SR network is designed without increasing the filter sizes with MU, which outperforms the state of the art SR methods with a smaller number of filter parameters. To the best of our knowledge, we are the first to incorporate MU into SR applications and show promising performance results. In MU, feature maps from a previous convolutional layer are divided into two parts along channels, which are then compared element-wise and only their max values are passed to a next layer. Along with some interesting properties of MU to be analyzed, we further investigate other variants of MU and their effects. In addition, while ReLU have a trouble for learning in networks with a very small number of convolutional filter parameters, MU do not. For SR applications, our MU-based network reconstructs high-resolution images with comparable quality compared to previous deep-learning-based SR methods, with lower filter parameters.Comment: ACCV201

    Transparent SiON/Ag/SiON multilayer passivation grown on a flexible polyethersulfone substrate using a continuous roll-to-roll sputtering system

    Get PDF
    We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process

    The cometary composition of a protoplanetary disk as revealed by complex cyanides

    Full text link
    Observations of comets and asteroids show that the Solar Nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface, seeding its early chemistry. Unlike asteroids, comets preserve a nearly pristine record of the Solar Nebula composition. The presence of cyanides in comets, including 0.01% of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can be readily explained by a combination of gas-phase chemistry to form e.g. HCN and an active ice-phase chemistry on grain surfaces that advances complexity[3]. Simple volatiles, including water and HCN, have been detected previously in Solar Nebula analogues - protoplanetary disks around young stars - indicating that they survive disk formation or are reformed in situ. It has been hitherto unclear whether the same holds for more complex organic molecules outside of the Solar Nebula, since recent observations show a dramatic change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and HC3N) in the protoplanetary disk around the young star MWC 480. We find abundance ratios of these N-bearing organics in the gas-phase similar to comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of the Solar Nebula was not unique.Comment: Definitive version of the manuscript is published in Nature, 520, 7546, 198, 2015. This is the author's versio

    A direct image of the obscuring disk surrounding an active galactic nucleus

    Get PDF
    Active galactic nuclei (AGN) are generally accepted to be powered by the release of gravitational energy in a compact accretion disk surrounding a massive black hole. Such disks are also necessary to collimate powerful radio jets seen in some AGN. The unifying classification schemes for AGN further propose that differences in their appearance can be attributed to the opacity of the accreting material, which may obstruct our view of the central region of some systems. The popular model for the obscuring medium is a parsec-scale disk of dense molecular gas, although evidence for such disks has been mostly indirect, as their angular size is much smaller than the resolution of conventional telescopes. Here we report the first direct images of a pc-scale disk of ionised gas within the nucleus of NGC 1068, the archetype of obscured AGN. The disk is viewed nearly edge-on, and individual clouds within the ionised disk are opaque to high-energy radiation, consistent with the unifying classification scheme. In projection, the disk and AGN axes align, from which we infer that the ionised gas disk traces the outer regions of the long-sought inner accretion disk.Comment: 14 pages, LaTeX, PSfig, to appear in Nature. also available at http://hethp.mpe-garching.mpg.de/Preprint

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors
    • …
    corecore