224 research outputs found
Distal radius fractures in children: substantial difference in stability between buckle and greenstick fractures
Background and purpose Numerous follow-up visits for wrist fractures in children are performed without therapeutic consequences. We investigated the degree to which the follow-up visits reveal complications and lead to change in management. The stability of greenstick and buckle fractures of the distal radius was assessed by comparing the lateral angulation radiographically
Expression of Msx-1 is suppressed in bisphosphonate associated osteonecrosis related jaw tissue-etiopathology considerations respecting jaw developmental biology-related unique features
<p>Abstract</p> <p>Background</p> <p>Bone-destructive disease treatments include bisphosphonates and antibodies against the osteoclast differentiator, RANKL (aRANKL); however, osteonecrosis of the jaw (ONJ) is a frequent side-effect. Current models fail to explain the restriction of bisphosphonate (BP)-related and denosumab (anti-RANKL antibody)-related ONJ to jaws. Msx-1 is exclusively expressed in craniofacial structures and pivotal to cranial neural crest (CNC)-derived periodontal tissue remodeling. We hypothesised that Msx-1 expression might be impaired in bisphosphonate-related ONJ. The study aim was to elucidate Msx-1 and RANKL-associated signal transduction (BMP-2/4, RANKL) in ONJ-altered and healthy periodontal tissue.</p> <p>Methods</p> <p>Twenty ONJ and twenty non-BP exposed periodontal samples were processed for RT-PCR and immunohistochemistry. An automated staining-based alkaline phosphatase-anti-alkaline phosphatase method was used to measure the stained cells:total cell-number ratio (labelling index, Bonferroni adjustment). Real-time RT-PCR was performed on ONJ-affected and healthy jaw periodontal samples (n = 20 each) to quantitatively compare Msx-1, BMP-2, RANKL, and GAPDH mRNA levels.</p> <p>Results</p> <p>Semi-quantitative assessment of the ratio of stained cells showed decreased Msx-1 and RANKL and increased BMP-2/4 (all p < 0.05) expression in ONJ-adjacent periodontal tissue. ONJ tissue also exhibited decreased relative gene expression for Msx-1 (p < 0.03) and RANKL (p < 0.03) and increased BMP-2/4 expression (p < 0.02) compared to control.</p> <p>Conclusions</p> <p>These results explain the sclerotic and osteopetrotic changes of periodontal tissue following BP application and substantiate clinical findings of BP-related impaired remodeling specific to periodontal tissue. RANKL suppression substantiated the clinical finding of impaired bone remodelling in BP- and aRANKL-induced ONJ-affected bone structures. Msx-1 suppression in ONJ-adjacent periodontal tissue suggested a bisphosphonate-related impairment in cellular differentiation that occurred exclusively jaw remodelling. Further research on developmental biology-related unique features of jaw bone structures will help to elucidate pathologies restricted to maxillofacial tissue.</p
Fenofibrate in the management of AbdoMinal aortic anEurysm (FAME): Study protocol for a randomised controlled trial
Background: Abdominal aortic aneurysm (AAA) is a slowly progressive destructive process of the main abdominal artery. Experimental studies indicate that fibrates exert beneficial effects on AAAs by mechanisms involving both serum lipid modification and favourable changes to the AAA wall. Methods/design: Fenofibrate in the management of AbdoMinal aortic anEurysm (FAME) is a multicentre, randomised, double-blind, placebo-controlled clinical trial to assess the effect of orally administered therapy with fenofibrate on key pathological markers of AAA in patients undergoing open AAA repair. A total of 42 participants scheduled for an elective open AAA repair will be randomly assigned to either 145 mg of fenofibrate per day or identical placebo for a minimum period of 2 weeks prior to surgery. Primary outcome measures will be macrophage number and osteopontin (OPN) concentration within the AAA wall as well as serum concentrations of OPN. Secondary outcome measures will include levels of matrix metalloproteinases and proinflammatory cytokines within the AAA wall, periaortic fat and intramural thrombus and circulating concentrations of AAA biomarkers. Discussion: At present, there is no recognised medical therapy to limit AAA progression. The FAME trial aims to assess the ability of fenofibrate to alter tissue markers of AAA pathology. Trial registration: Australian New Zealand Clinical Trials Registry, ACTRN12612001226897. Registered on 20 November 2012. © 2017 The Author(s)
Dynamically-Driven Inactivation of the Catalytic Machinery of the SARS 3C-Like Protease by the N214A Mutation on the Extra Domain
Despite utilizing the same chymotrypsin fold to host the catalytic machinery, coronavirus 3C-like proteases (3CLpro) noticeably differ from picornavirus 3C proteases in acquiring an extra helical domain in evolution. Previously, the extra domain was demonstrated to regulate the catalysis of the SARS-CoV 3CLpro by controlling its dimerization. Here, we studied N214A, another mutant with only a doubled dissociation constant but significantly abolished activity. Unexpectedly, N214A still adopts the dimeric structure almost identical to that of the wild-type (WT) enzyme. Thus, we conducted 30-ns molecular dynamics (MD) simulations for N214A, WT, and R298A which we previously characterized to be a monomer with the collapsed catalytic machinery. Remarkably, three proteases display distinctive dynamical behaviors. While in WT, the catalytic machinery stably retains in the activated state; in R298A it remains largely collapsed in the inactivated state, thus implying that two states are not only structurally very distinguishable but also dynamically well separated. Surprisingly, in N214A the catalytic dyad becomes dynamically unstable and many residues constituting the catalytic machinery jump to sample the conformations highly resembling those of R298A. Therefore, the N214A mutation appears to trigger the dramatic change of the enzyme dynamics in the context of the dimeric form which ultimately inactivates the catalytic machinery. The present MD simulations represent the longest reported so far for the SARS-CoV 3CLpro, unveiling that its catalysis is critically dependent on the dynamics, which can be amazingly modulated by the extra domain. Consequently, mediating the dynamics may offer a potential avenue to inhibit the SARS-CoV 3CLpro
Vertebroplasty and kyphoplasty: a comparative review of efficacy and adverse events
Vertebroplasty and kyphoplasty have become common surgical techniques for the treatment of vertebral compression fractures. Vertebroplasty involves the percutaneous injection of bone cement into the cancellous bone of a vertebral body with the goals of pain alleviation and preventing further loss of vertebral body height. Kyphoplasty utilizes an inflatable balloon to create a cavity for the cement with the additional potential goals of restoring height and reducing kyphosis. Vertebroplasty and kyphoplasty are effective treatment options for the reduction of pain associated with vertebral body compression fractures. Biomechanical studies demonstrate that kyphoplasty is initially superior for increasing vertebral body height and reducing kyphosis, but these gains are lost with repetitive loading. Complications secondary to extravasation of cement include compression of neural elements and venous embolism. These complications are rare but more common with vertebroplasty. Vertebroplasty and kyphoplasty are both safe and effective procedures for the treatment of vertebral body compression fractures
Synthetic biology: Understanding biological design from synthetic circuits
An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics
- …