52 research outputs found
Ulcerative colitis disease activity as subjectively assessed by patient-completed questionnaires following orthotopic liver transplantation for sclerosing cholangitis
To assess whether or not liver transplantation and subsequent immunosuppression with cyclosporine and prednisone affect ulcerative colitis symptomatology, we surveyed by questionnaire all 23 surviving patients with pretransplant colonoscopy-documented ulcerative colitis who were transplanted for primary sclerosing cholangitis between June 1982 and September 1985. At follow-up [89.8±7.6 weeks (mean±sem], all six patients who had had asymptomatic colonoscopy-documented ulcerative colitis reported continued ulcerative colitis quiescence. Among the 17 patients who had had symptomatic colonoscopydocumented ulcerative colitis at time of liver transplantation, 88.2% reported improvement in overall ulcerative colitis severity (P<0.001), with significant improvement in the frequency of bowel movements reported by 100%, in crampy abdominal pain by 87.5%, in bowel urgency by 75%, in the occurrence of pus or mucus in stool by 87.5%, in the incidence of ulcerative colitis flares by 81.8%, and in the number of days unable to function normally due to ulcerative colitis symptoms by 78.6% (all at least P<0.01). These data demonstrate that ulcerative colitis symptom severity significantly improves following liver transplantation with immunosuppression with cyclosporine and prednisone. © 1991 Plenum Publishing Corporation
Magnetars and pulsars: a missing link
There is growing evidence that soft gamma-ray repeaters (SGRs) and anomalous
X-ray pulsars (AXPs) are isolated neutron stars with superstrong magnetic
fields, i.e., magnetars, marking them a distinguished species from the
conventional species of spindown-powered isolated neutron stars, i.e., radio
pulsars. The current arguments in favor of the magnetar interpretation of
SGR/AXP phenomenology will be outlined, and the two energy sources in
magnetars, i.e. a magnetic dissipation energy and a spindown energy, will be
reviewed. I will then discuss a missing link between magnetars and pulsars,
i.e., lack of the observational evidence of the spindown-powered behaviors in
known magnetars. Some recent theoretical efforts in studying such behaviors
will be reviewed along with some predictions testable in the near future.Comment: Invited talk at the Sixth Pacific Rim Conference on Stellar
Astrophysics, a tribute to Helmut A. Abt, July 11-17, 2002, Xi'an. To appear
in the proceedings (eds. K. S. Cheng, K. C. Leung & T. P. Li
Transit Timing and Duration Variations for the Discovery and Characterization of Exoplanets
Transiting exoplanets in multi-planet systems have non-Keplerian orbits which
can cause the times and durations of transits to vary. The theory and
observations of transit timing variations (TTV) and transit duration variations
(TDV) are reviewed. Since the last review, the Kepler spacecraft has detected
several hundred perturbed planets. In a few cases, these data have been used to
discover additional planets, similar to the historical discovery of Neptune in
our own Solar System. However, the more impactful aspect of TTV and TDV studies
has been characterization of planetary systems in which multiple planets
transit. After addressing the equations of motion and parameter scalings, the
main dynamical mechanisms for TTV and TDV are described, with citations to the
observational literature for real examples. We describe parameter constraints,
particularly the origin of the mass/eccentricity degeneracy and how it is
overcome by the high-frequency component of the signal. On the observational
side, derivation of timing precision and introduction to the timing diagram are
given. Science results are reviewed, with an emphasis on mass measurements of
transiting sub-Neptunes and super-Earths, from which bulk compositions may be
inferred.Comment: Revised version. Invited review submitted to 'Handbook of
Exoplanets,' Exoplanet Discovery Methods section, Springer Reference Works,
Juan Antonio Belmonte and Hans Deeg, Eds. TeX and figures may be found at
https://github.com/ericagol/TTV_revie
Accreting Neutron Stars in Low-Mass X-Ray Binary Systems
Using the Rossi X-ray Timing Explorer (RossiXTE), astronomers have discovered
that disk-accreting neutron stars with weak magnetic fields produce three
distinct types of high-frequency X-ray oscillations. These oscillations are
powered by release of the binding energy of matter falling into the strong
gravitational field of the star or by the sudden nuclear burning of matter that
has accumulated in the outermost layers of the star. The frequencies of the
oscillations reflect the orbital frequencies of gas deep in the gravitational
field of the star and/or the spin frequency of the star. These oscillations can
therefore be used to explore fundamental physics, such as strong-field gravity
and the properties of matter under extreme conditions, and important
astrophysical questions, such as the formation and evolution of millisecond
pulsars. Observations using RossiXTE have shown that some two dozen neutron
stars in low-mass X-ray binary systems have the spin rates and magnetic fields
required to become millisecond radio-emitting pulsars when accretion ceases,
but that few have spin rates above about 600 Hz. The properties of these stars
show that the paucity of spin rates greater than 600 Hz is due in part to the
magnetic braking component of the accretion torque and to the limited amount of
angular momentum that can be accreted in such systems. Further study will show
whether braking by gravitational radiation is also a factor. Analysis of the
kilohertz oscillations has provided the first evidence for the existence of the
innermost stable circular orbit around dense relativistic stars that is
predicted by strong-field general relativity. It has also greatly narrowed the
possible descriptions of ultradense matter.Comment: 22 pages, 7 figures, updated list of sources and references, to
appear in "Short-period Binary Stars: Observation, Analyses, and Results",
eds. E.F. Milone, D.A. Leahy, and D. Hobill (Dordrecht: Springer,
http://www.springerlink.com
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Neutron star envelopes and thermal radiation from the magnetic surface
The thermal structure of neutron star envelopes is discussed with emphasis on analytic results. Recent progress on the effect of chemical constitution and high magnetic fields on the opacities and the thermal structure is further reviewed in view of the application to pulsar cooling and magnetars
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
Determination of Interleukin-6 and Tumor Necrosis Factor-alpha concentrations in Iranian-Khorasanian patients with preeclampsia
BACKGROUND: Our objective was to determine the role of Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-alpha), markers of immune activation and endothelial dysfunction, in patients with preeclampsia. METHODS: Twenty four women with preeclampsia and eighteen antepartum normotensive pregnant women were recruited as controls. Serum levels of IL-6 and TNF-alpha were measured by enzyme-linked immunosorbent assay. We used independent-samples t test to assess the differences in the concentration of cytokines in preeclamptic patients and control subjects. RESULTS: IL-6 levels [mean (S.D.)] were significantly higher in preeclamptic women [5.8 (4.85) pg/ml] compared to normal pregnant women [3.01 (2.45) pg/ml] (p = 0.02). There was no significant change in concentration of TNF-alpha in preeclamptic women [53.8 (30.0) pg/ml] compared to normal pregnant women [51.9 (33.8) pg/ml] (p > 0.1). CONCLUSION: The results of this study show that IL-6 as a pro-inflammatory cytokine is present in higher concentration in women with preeclampsia. The study was undertaken in women with established preeclampsia and it is not possible to determine whether the increased concentration of IL-6 is a cause or consequence of the disease. Furthermore, these findings suggest that serum TNF-alpha level is not associated with preeclampsia
- …
