15 research outputs found

    Relationship between Physical Disability and Depression by Gender: A Panel Regression Model

    Get PDF
    Background Depression in persons with physical disabilities may be more common than in the general population. The purpose of this study was to examine the relationship between physical disability and depression by gender among adults, using a large, nationally representative sample. Methods This study used data from the Korean Longitudinal Study of Aging, Wave one through four, and ran a series of random effect panel regression models to test the relationship between physical disability status and depression by gender. We tested the moderating effect of gender on the relationship between disability status and depression level by examining the significance of the cross-product term between disability status and gender. Results After controlling for self-rated health, marital status, employment status, education, and age, subjects who were female or diagnosed as having any disability presented higher levels of depression scores. Further, the difference in terms of their depression level measured by Center for Epidemiologic Studies Short Depression Scale (CES-D 10) scores between those who were diagnosed as having any disability and those who were not was greater for females than for their male counterparts. Conclusion This study reaffirmed that disability is the risk factor of depression, using longitudinal data. In addition, female gender is the effect modifier rather than the risk factor. The effect of gender in the non-disability group, mostly composed of older persons, is limited. On the contrary, the female disability group showed more depressive symptoms than the male disability group. The gender difference in the disability group and the role of culture on these differences need further research

    A Neuro-Mathematical Model for Size and Context Related Illusions

    No full text
    We provide here a mathematical model of size/context illusions, inspired by the functional architecture of the visual cortex. We first recall previous models of scale and orientation, in particular Sarti et al. in Biol Cybern 9:33–48, (2008), and simplify it, only considering the feature of scale. Then we recall the deformation model of illusion, introduced by Franceschiello et al. (J Math Imaging Vis 60:94–108, 2017b) to describe orientation related GOIs, and adapt it to size illusion. We finally apply the model to the Ebbinghaus and Delboeuf illusions, validating the results by comparing them with experimental data from Massaro and Anderson (J Exp Psychol 89:147, 1971) and Roberts et al. (Perception 34:847–856, 2005)
    corecore