36 research outputs found

    Optimising biocatalyst design for obtaining high transesterification activity by α-chymotrypsin in non-aqueous media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enzymes are often used in organic solvents for catalyzing organic synthesis. Two enzyme preparations, EPRP (enzyme precipitated and rinsed with n-propanol) and PCMC (protein coated microcrystals) show much higher activities than lyophilized powders in such systems. Both preparations involve precipitation by an organic solvent. The clear understanding of why these preparations show higher catalytic activity than lyophilized powders in organic solvents is not available.</p> <p>Results</p> <p>It was found that EPRPs of α-chymotrypsin prepared by precipitation with <it>n</it>-propanol in the presence of trehalose contained substantial amount of trehalose (even though trehalose alone at these lower concentrations was not precipitated by <it>n</it>-propanol). The presence of trehalose in these EPRPs resulted in much higher transesterification rates (45.2 nmoles mg<sup>-1</sup>min<sup>-1</sup>) as compared with EPRPs prepared in the absence of trehalose (16.6 nmoles mg<sup>-1</sup>min<sup>-1</sup>) in octane. Both kinds of EPRPs gave similar initial transesterification rates in acetonitrile. Use of higher concentrations of trehalose (when trehalose alone also precipitates out), resulted in the formation of PCMCs, which showed higher transesterification rates in both octane and acetonitrile. SEM analysis showed the relative sizes of various preparations. Presence of trehalose resulted in EPRPs of smaller sizes.</p> <p>Conclusion</p> <p>The two different forms of enzymes (EPRP and PCMC) known to show higher activity in organic solvents were found to be different only in the way the low molecular weight additive was present along with the protein. Therefore, the enhancement in the transesterification activity in EPRPs prepared in the presence of trehalose was due to: (a) better retention of essential water layer for catalysis due to the presence of the sugar. This effect disappeared where the reaction media was polar as the polar solvent (acetonitrile) is more effective in stripping off the water from the enzyme; (b) reduction in particle size as revealed by SEM. In the case of PCMC, the enhancement in the initial rates was due to an increase in the surface area of the biocatalyst since protein is coated over the core material (trehalose or salt).</p> <p>It is hoped that the insight gained in this work would help in a better understanding for designing high activity biocatalyst preparation of non-aqueous media.</p

    Enzymatic oligomerization and polymerization of arylamines: state of the art and perspectives

    Get PDF
    The literature concerning the oxidative oligomerization and polymerization of various arylamines, e.g., aniline, substituted anilines, aminonaphthalene and its derivatives, catalyzed by oxidoreductases, such as laccases and peroxidases, in aqueous, organic, and mixed aqueous organic monophasic or biphasic media, is reviewed. An overview of template-free as well as template-assisted enzymatic syntheses of oligomers and polymers of arylamines is given. Special attention is paid to mechanistic aspects of these biocatalytic processes. Because of the nontoxicity of oxidoreductases and their high catalytic efficiency, as well as high selectivity of enzymatic oligomerizations/polymerizations under mild conditions-using mainly water as a solvent and often resulting in minimal byproduct formation-enzymatic oligomerizations and polymerizations of arylamines are environmentally friendly and significantly contribute to a "green'' chemistry of conducting and redox-active oligomers and polymers. Current and potential future applications of enzymatic polymerization processes and enzymatically synthesized oligo/polyarylamines are discussed

    Bone Cements Used in Vertebral Augmentation: A State-of-the-art Narrative Review

    No full text
    Tyree D Williams,1– 3 Talia Adler,2,4 Lindsey Smokoff,2,4 Anmoldeep Kaur,2,5 Benjamin Rodriguez,2,3,6 Kavita Jyoti Prakash,6 Edib Redzematovic,2 Turner S Baker,2,3,7 Benjamin I Rapoport,2,3 Edward S Yoon,8 Douglas P Beall,9 Jonathan S Dordick,1 Reade A De Leacy3 1Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; 2Sinai BioDesign, Mount Sinai Medical System, New York, NY, USA; 3Department of Neurosurgery, Mount Sinai Medical System, New York, NY, USA; 4Columbia University School of General Studies, New York, NY, USA; 5Department of Neuroscience, Smith College, Northampton, MA, USA; 6Icahn School of Medicine at Mount Sinai, New York, NY, USA; 7Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA; 8Hospital for Special Surgery, New York, NY, USA; 9Spine Fracture Institute, Oklahoma City, OK, USACorrespondence: Benjamin Rodriguez, Department of Neurosurgery, Mount Sinai Medical System, One Gustave L. Levy Place, Box 1136, New York, NY, USA, Tel +1 615 524-0211, Email [email protected]: Vertebral compression fractures (VCFs) are common in osteoporotic patients, with a frequency projected to increase alongside a growing geriatric population. VCFs often result in debilitating back pain and decreased mobility. Cement augmentation, a minimally invasive surgical technique, is widely used to stabilize fractures and restore vertebral height. Acrylic-based cements and calcium phosphate cements are currently the two primary fill materials utilized for these procedures. Despite their effectiveness, acrylic bone cements and calcium phosphate cements have been associated with various intraoperative and postoperative incidents impacting VCF treatment. Over the past decade, discoveries in the field of biomedical engineering and material science have shown advancements toward addressing these limitations. This narrative review aims to assess the potential pitfalls and barriers of the various types of bone cements.Keywords: osteoporosis, vertebral compression fractures, bone cement, vertebroplasty, kyphoplasty, vertebral augmentatio
    corecore