802 research outputs found

    The Innate Immune System of the Perinatal Lung and Responses to Respiratory Syncytial Virus Infection

    Get PDF
    The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens

    Breathlessness is associated with urinary incontinence in men: A community-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Urinary incontinence (UI) is a distressing problem for older people. To investigate the relationship between UI and respiratory symptoms among middle-aged and older men, a community-based study was conducted in Japan.</p> <p>Methods</p> <p>A convenience sample of 668 community-dwelling men aged 40 years or above was recruited from middle and southern Japan. The International Consultation on Incontinence Questionnaire-Short Form, the Medical Research Council's dyspnoea scale and the Australian Lung Foundation's Feeling Short of Breath scale, were administered by face-to-face interviews to ascertain their UI status and respiratory symptoms.</p> <p>Results</p> <p>The overall prevalence of UI was 7.6%, with urge-type leakage (59%) being most common among the 51 incontinent men. The presence of respiratory symptoms was significantly higher among incontinent men than those without the condition, especially for breathlessness (45% versus 30%, <it>p </it>= 0.025). The odds of UI for breathlessness was 2.11 (95% confidence interval 1.10-4.06) after accounting for age, body mass index, smoking and alcohol drinking status of each individual.</p> <p>Conclusions</p> <p>The findings suggested a significant association between UI and breathlessness in middle-aged and older men.</p

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Mapping the Anthocyaninless (anl) Locus in Rapid-Cycling Brassica rapa (RBr) to Linkage Group R9

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anthocyanins are flavonoid pigments that are responsible for purple coloration in the stems and leaves of a variety of plant species. <it>Anthocyaninless </it>(<it>anl</it>) mutants of <it>Brassica rapa </it>fail to produce anthocyanin pigments. In rapid-cycling <it>Brassica rapa</it>, also known as Wisconsin Fast Plants, the anthocyaninless trait, also called non-purple stem, is widely used as a model recessive trait for teaching genetics. Although anthocyanin genes have been mapped in other plants such as <it>Arabidopsis thaliana</it>, the <it>anl </it>locus has not been mapped in any <it>Brassica </it>species.</p> <p>Results</p> <p>We tested primer pairs known to amplify microsatellites in <it>Brassicas </it>and identified 37 that amplified a product in rapid-cycling <it>Brassica rapa</it>. We then developed three-generation pedigrees to assess linkage between the microsatellite markers and <it>anl</it>. 22 of the markers that we tested were polymorphic in our crosses. Based on 177 F<sub>2 </sub>offspring, we identified three markers linked to <it>anl </it>with LOD scores ≥ 5.0, forming a linkage group spanning 46.9 cM. Because one of these markers has been assigned to a known <it>B. rapa </it>linkage group, we can now assign the <it>anl </it>locus to <it>B. rapa </it>linkage group R9.</p> <p>Conclusion</p> <p>This study is the first to identify the chromosomal location of an anthocyanin pigment gene among the <it>Brassicas</it>. It also connects a classical mutant frequently used in genetics education with molecular markers and a known chromosomal location.</p

    Citizen Science Reveals Unexpected Continental-Scale Evolutionary Change in a Model Organism

    Get PDF
    Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the brown-lipped banded snail (Cepaea nemoralis). This species is sensitive to its thermal environment and exhibits several polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C. nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009 through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the colour phenotype with the highest albedo (yellow) was shown to have persisted and a difference in colour frequency between woodland and more open habitats was confirmed, but there was no general increase in the frequency of yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation. By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating that the influence of other selective agents, possibly related to changing predation pressure and habitat change with effects on micro-climate

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Thin-section Computed Tomography findings before and after azithromycin treatment of neutrophilic reversible lung allograft dysfunction

    Get PDF
    Recently a novel subgroup of bronchiolitis obliterans syndrome (BOS) has been described in patients after lung transplantation with high neutrophil counts in broncho-alveolar lavage and recovery of lung functional decline with azithromycin treatment. We aimed to describe the thin-section computed tomography (CT) findings of these neutrophilic reversible allograft dysfunction (NRAD) patients before and after azithromycin.status: publishe

    Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation

    Get PDF
    Transcriptional interference has been recently recognized as an unexpectedly complex and mostly negative regulation of genes. Despite a relatively few studies that emerged in recent years, it has been demonstrated that a readthrough transcription derived from one gene can influence the transcription of another overlapping or nested gene. However, the molecular effects resulting from this interaction are largely unknown.Using in silico chromosome walking, we searched for prematurely terminated transcripts bearing signatures of intron retention or exonization of intronic sequence at their 3' ends upstream to human L1 retrotransposons, protein-coding and noncoding nested genes. We demonstrate that transcriptional interference induced by intronic L1s (or other repeated DNAs) and nested genes could be characterized by intron retention, forced exonization and cryptic polyadenylation. These molecular effects were revealed from the analysis of endogenous transcripts derived from different cell lines and tissues and confirmed by the expression of three minigenes in cell culture. While intron retention and exonization were comparably observed in introns upstream to L1s, forced exonization was preferentially detected in nested genes. Transcriptional interference induced by L1 or nested genes was dependent on the presence or absence of cryptic splice sites, affected the inclusion or exclusion of the upstream exon and the use of cryptic polyadenylation signals.Our results suggest that transcriptional interference induced by intronic L1s and nested genes could influence the transcription of the large number of genes in normal as well as in tumor tissues. Therefore, this type of interference could have a major impact on the regulation of the host gene expression

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (δ13C, δ18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the δ13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these δ13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell δ13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in δ13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments
    corecore