2,704 research outputs found
Relationship between the diagnosis, preoperative evaluation, and prognosis after orthotopic liver transplantation
The purpose of this study was to identify which of the biochemical, immunological, or functional parameters derived before surgery as part of a systemic evaluation were helpful in predicting the frequency of rejection episodes, the chance of survival, and the cause risk of death (should death occur) of patients after orthotopic liver transplantation (OLTx). Ninety-eight adult patients who had an extensive preoperative protocol evaluation were studied before OLTx. The biochemical parameters assessed were albumin, prothrombin time, bilirubin, and ICG clearance. The immunologic parameters assessed included total lymphocytes, T3 cells, T4 cells, T8 cells, and the T4/T8 ratio. The degree of histocompatibility antigen (HLA) matching between the donor and the recipient was also evaluated in 80 of the 98 patients studied. Most postoperative deaths occurred within 12 weeks of the procedure (24%; 24 of 98 patients); 13 patients (13%) died within the first 6 postoperative weeks, of either bacterial or fungal sepsis. An additional 14 patients (14%) died after the initial 6 postoperative weeks due, primarily of an acquired viral and/or protozoan infection (p < 0.01). During the first 6 weeks, survival was better for patients with cholestatic liver disease (ChLD, 93%, n = 45) and miscellaneous liver diseases (MISC, 100%, n = 10) than it was for those with parenchymal liver diseases (PLD, 77%, n = 43). Although albumin, prothrombin time, T4/T8 ratios, and per cent T8 cells were statistically different in patients with PLD as compared with those with ChLD, these parameters, as well as the per cent T4 cells, serum bilirubin level, per cent retention of ICG at 15 minutes, and the plasma ICG disappearence rate were not found to be of substantial help in predicting patient survival or nonsurvival. Moreover, neither the degree of HLA matching nor the number of rejection episodes differed between surviving and nonsurviving patients. The results of this study suggest that patients with PLD are at increased risk of early postoperative death after OLTx because of bacterial and/or fungal sepsis, as compared with patients operated upon for ChLD. Better pre-, intra-, and postoperative predictors of risk of death and complications are needed to reduce the early mortality observed after orthotopic liver transplantation
Messages from the other side: parasites receive damage cues from their host plants
As sessile organisms, plants rely on their environment for cues indicating imminent herbivory. These cues can originate from tissues on the same plant or from different individuals. Since parasitic plants form vascular connections with their host, parasites have the potential to receive cues from hosts that allow them to adjust defenses against future herbivory. However, the role of plant communication between hosts and parasites for herbivore defense remains poorly investigated. Here we examined the effects of damage to lupine hosts (Lupinus texensis) on responses of the attached hemiparasite (Castilleja indivisa), and indirectly, on a specialist herbivore of the parasite, buckeyes (Junonia coenia). Lupines produce alkaloids as defenses against herbivore that can be taken up by the parasite. We found that damage to lupine host plants by beet armyworm (Spodoptera exigua) significantly increased jasmonic acid (JA) levels in both the lupine host and parasite, suggesting uptake of phytohormones or priming of parasite defenses using host cues. However, lupine host damage did not induce changes in alkaloid levels in the hosts or parasites. Interestingly, the parasite had substantially higher concentrations of JA and alkaloids compared to lupine host plants. Buckeye herbivores consumed more parasite tissue when attached to damaged compared to undamaged hosts. We hypothesize that increased JA due to lupine host damage induced higher iridoid glycosides in the parasite, which are feeding stimulants for this specialist herbivore. Our results demonstrate that damage to hosts may affect both parasites and associated herbivores, indicating cascading effects of host damage on multiple trophic levels
General Form of the Color Potential Produced by Color Charges of the Quark
Constant electric charge satisfies the continuity equation where is the current density of the electron.
However, the Yang-Mills color current density of the quark
satisfies the equation which is not a continuity
equation () which implies that a color charge
of the quark is not constant but it is time dependent where
are color indices. In this paper we derive general form of color
potential produced by color charges of the quark. We find that the general form
of the color potential produced by the color charges of the quark at rest is
given by \Phi^a(x) =A_0^a(t,{\bf x}) =\frac{q^b(t-\frac{r}{c})}{r}\[\frac{{\rm
exp}[g\int dr \frac{Q(t-\frac{r}{c})}{r}] -1}{g \int dr
\frac{Q(t-\frac{r}{c})}{r}}\]_{ab} where integration is an indefinite
integration, ~~ , ~~, ~~ is the retarded time, ~~ is the speed
of light, ~~ is the position of the quark at the retarded
time and the repeated color indices (=1,2,...8) are summed. For constant
color charge we reproduce the Coulomb-like potential
which is consistent with the Maxwell theory where
constant electric charge produces the Coulomb potential
.Comment: Final version, two more sections added, 45 pages latex, accepted for
publication in JHE
Holographic Anomalous Conductivities and the Chiral Magnetic Effect
We calculate anomaly induced conductivities from a holographic gauge theory
model using Kubo formulas, making a clear conceptual distinction between
thermodynamic state variables such as chemical potentials and external
background fields. This allows us to pinpoint ambiguities in previous
holographic calculations of the chiral magnetic conductivity. We also calculate
the corresponding anomalous current three-point functions in special kinematic
regimes. We compare the holographic results to weak coupling calculations using
both dimensional regularization and cutoff regularization. In order to
reproduce the weak coupling results it is necessary to allow for singular
holographic gauge field configurations when a chiral chemical potential is
introduced for a chiral charge defined through a gauge invariant but
non-conserved chiral density. We argue that this is appropriate for actually
addressing charge separation due to the chiral magnetic effect.Comment: 17 pages, 1 figure. v2: 18 pages, 1 figure, discussion clarified
throughout the text, references added, version accepted for publication in
JHE
What two models may teach us about duality violations in QCD
Though the operator product expansion is applicable in the calculation of
current correlation functions in the Euclidean region, when approaching the
Minkowskian domain, violations of quark-hadron duality are expected to occur,
due to the presence of bound-state or resonance poles. In QCD finite-energy sum
rules, contour integrals in the complex energy plane down to the Minkowskian
axis have to be performed, and thus the question arises what the impact of
duality violations may be. The structure and possible relevance of duality
violations is investigated on the basis of two models: the Coulomb system and a
model for light-quark correlators which has already been studied previously. As
might yet be naively expected, duality violations are in some sense "maximal"
for zero-width bound states and they become weaker for broader resonances whose
poles lie further away from the physical axis. Furthermore, to a certain
extent, they can be suppressed by choosing appropriate weight functions in the
finite-energy sum rules. A simplified Ansatz for including effects of duality
violations in phenomenological QCD sum rule analyses is discussed as well.Comment: 17 pages, 6 figures; version to appear in JHE
Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model
In the chiral magnetic effect an imbalance in the number of left- and
right-handed quarks gives rise to an electromagnetic current parallel to the
magnetic field produced in noncentral heavy-ion collisions. The chiral
imbalance may be induced by topologically nontrivial gluon configurations via
the QCD axial anomaly, while the resulting electromagnetic current itself is a
consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain
limit is dual to large-N_c QCD, we discuss the proper implementation of the QED
axial anomaly, the (ambiguous) definition of chiral currents, and the
calculation of the chiral magnetic effect. We show that this model correctly
contains the so-called consistent anomaly, but requires the introduction of a
(holographic) finite counterterm to yield the correct covariant anomaly.
Introducing net chirality through an axial chemical potential, we find a
nonvanishing vector current only before including this counterterm. This seems
to imply the absence of the chiral magnetic effect in this model. On the other
hand, for a conventional quark chemical potential and large magnetic field,
which is of interest in the physics of compact stars, we obtain a nontrivial
result for the axial current that is in agreement with previous calculations
and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent
conductivity at the end of section 4; references added; version to appear in
JHE
P-odd and CP-odd Four-Quark Contributions to Neutron EDM
In a class of beyond-standard-model theories, CP-odd observables, such as the
neutron electric dipole moment, receive significant contributions from
flavor-neutral P-odd and CP-odd four-quark operators. However, considerable
uncertainties exist in the hadronic matrix elements of these operators strongly
affecting the experimental constraints on CP-violating parameters in the
theories. Here we study their hadronic matrix elements in combined chiral
perturbation theory and nucleon models. We first classify the operators in
chiral representations and present the leading-order QCD evolutions. We then
match the four-quark operators to the corresponding ones in chiral hadronic
theory, finding symmetry relations among the matrix elements. Although this
makes lattice QCD calculations feasible, we choose to estimate the
non-perturbative matching coefficients in simple quark models. We finally
compare the results for the neutron electric dipole moment and P-odd and CP-odd
pion-nucleon couplings with the previous studies using naive factorization and
QCD sum rules. Our study shall provide valuable insights on the present
hadronic physics uncertainties in these observables.Comment: 40 pages, 7 figures. This is the final version. A discussion of the
uncertainty of the calculation is adde
The Sphaleron Rate in SU(N) Gauge Theory
The sphaleron rate is defined as the diffusion constant for topological
number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration
of axial light quark number in QCD and is of interest both in electroweak
baryogenesis and possibly in heavy ion collisions. We calculate the
weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most
sensible extrapolation towards intermediate coupling which we can. We also
study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure
Axion-like-particle search with high-intensity lasers
We study ALP-photon-conversion within strong inhomogeneous electromagnetic
fields as provided by contemporary high-intensity laser systems. We observe
that probe photons traversing the focal spot of a superposition of Gaussian
beams of a single high-intensity laser at fundamental and frequency-doubled
mode can experience a frequency shift due to their intermittent propagation as
axion-like-particles. This process is strongly peaked for resonant masses on
the order of the involved laser frequencies. Purely laser-based experiments in
optical setups are sensitive to ALPs in the mass range and can
thus complement ALP searches at dipole magnets.Comment: 25 pages, 2 figure
- …
