3 research outputs found

    On the curvature in logarithmic plots of rate coefficients for chemical reactions

    Get PDF
    In terms of the reduced potential energy barrier ζ = ΔuTS/kT, the rate coefficients for chemical reactions are usually expressed as proportional to e-ζ. The coupling between vibrational modes of the medium to the reaction coordinate leads to a proportionality of the regularized gamma function of Euler Q(a,ζ) = Γ(a,ζ)/Γ(a), with a being the number of modes coupled to the reaction coordinate. In this work, the experimental rate coefficients at various temperatures for several chemical reactions were fitted to the theoretical expression in terms of Q(a,ζ) to determine the extent of its validity and generality. The new expression affords lower deviations from the experimental points in 29 cases out of 38 and it accounts for the curvature in the logarithmic plots of rate coefficients versus inverse temperature. In the absence of tunneling, conventional theories predict the curvature of these plots to be identically zero

    Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis

    No full text
    The question of whether protein motions play a role in the chemical step of enzymatic catalysis has generated much controversy in recent years. Debate has recently reignited over possible dynamic contributions to catalysis in dihydrofolate reductase, following conflicting conclusions from studies of the N23PP/S148A variant of the Escherichia coli enzyme. By investigating the temperature dependence of kinetic isotope effects, we present evidence that the reduction in the hydride transfer rate constants in this variant is not a direct result of impairment of conformational fluctuations. Instead, the conformational state of the enzyme immediately before hydride transfer, which determines the electrostatic environment of the active site, affects the rate constant for the reaction. Although protein motions are clearly important for binding and release of substrates and products, there appears to be no detectable dynamic coupling of protein motions to the hydride transfer step itself
    corecore