16 research outputs found

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Physikalische Grundlagen

    No full text

    Nanodentistry: A Paradigm Shift-from Fiction to Reality

    No full text
    Nanodentistry is an emerging field with significant potential to yield new generation of technologically advanced clinical tools and devices for oral healthcare. Nanoscale topology and quantitative biomechanical or biophysical analysis of dental surfaces are of significant interest. In particular, using Atomic force microscopy techniques—diseases such as dental caries, tooth hypersensitivity, and oral cancer can be quantified based on morphological, biophysical and biochemical nanoscale properties of tooth surface itself and dental materials or oral fluids such as saliva. An outlook on future “nanodentistry” developments such as saliva exosomes based diagnostics, designing biocompatible, antimicrobial dental implants and personalized dental healthcare is presented. This article examines current applications of nanotechnology alongside proposed applications in the future and aims to demonstrate that, as well as a good deal of science fiction, there is some tangible science fact emerging from this novel multidisciplinary science
    corecore