523 research outputs found

    Anomalous Quantum Diffusion at the Superfluid-Insulator Transition

    Full text link
    We consider the problem of the superconductor-insulator transition in the presence of disorder, assuming that the fermionic degrees of freedom can be ignored so that the problem reduces to one of Cooper pair localization. Weak disorder drives the critical behavior away from the pure critical point, initially towards a diffusive fixed point. We consider the effects of Coulomb interactions and quantum interference at this diffusive fixed point. Coulomb interactions enhance the conductivity, in contrast to the situation for fermions, essentially because the exchange interaction is opposite in sign. The interaction-driven enhancement of the conductivity is larger than the weak-localization suppression, so the system scales to a perfect conductor. Thus, it is a consistent possibility for the critical resistivity at the superconductor-insulator transition to be zero, but this value is only approached logarithmically. We determine the values of the critical exponents η,z,ν\eta,z,\nu and comment on possible implications for the interpretation of experiments

    Evolution of the Density of States Gap in a Disordered Superconductor

    Full text link
    It has only recently been possible to study the superconducting state in the attractive Hubbard Hamiltonian via a direct observation of the formation of a gap in the density of states N(w). Here we determine the effect of random chemical potentials on N(w) and show that at weak coupling, disorder closes the gap concurrently with the destruction of superconductivity. At larger, but still intermediate coupling, a pseudo-gap in N(w) remains even well beyond the point at which off-diagonal long range order vanishes. This change in the elementary excitations of the insulating phase corresponds to a crossover between Fermi- and Bose-Insulators. These calculations represent the first computation of the density of states in a finite dimensional disordered fermion model via the Quantum Monte Carlo and maximum entropy methods.Comment: 4 pages, 4 figure

    Thickness-Magnetic Field Phase Diagram at the Superconductor-Insulator Transition in 2D

    Full text link
    The superconductor-insulator transition in ultrathin films of amorphous Bi was tuned by changing the film thickness, with and without an applied magnetic field. The first experimentally obtained phase diagram is mapped as a function of thickness and magnetic field in the T=0 limit. A finite size scaling analysis has been carried out to determine the critical exponent product vz, which was found to be 1.2 for the zero field transition, and 1.4 for the finite field transition. Both results are different from the exponents found for the magnetic field tuned transition in the same system, 0.7.Comment: 4 pages, 4 figure

    Evidence of Vortices on the Insulating Side of the Superconductor-Insulator Transition

    Full text link
    The magnetoresistance of ultrathin insulating films of Bi has been studied with magnetic fields applied parallel and perpendicular to the plane of the sample. Deep in the strongly localized regime, the magnetoresistance is negative and independent of field orientation. As film thicknesses increase, the magnetoresistance becomes positive, and a difference between values measured in perpendicular and parallel fields appears, which is a linear function of the magnetic field and is positive. This is not consistent with the quantum interference picture. We suggest that it is due to vortices present on the insulating side of the superconductor-insulator transition.Comment: 4 pages, 3 figure

    Dual theory of the superfluid-Bose glass transition in disordered Bose-Hubbard model in one and two dimensions

    Full text link
    I study the zero temperature phase transition between superfluid and insulating ground states of the Bose-Hubbard model in a random chemical potential and at large integer average number of particles per site. Duality transformation maps the pure Bose-Hubbard model onto the sine-Gordon theory in one dimension (1D), and onto the three dimensional Higgs electrodynamics in two dimensions (2D). In 1D the random chemical potential in dual theory couples to the space derivative of the dual field, and appears as a random magnetic field along the imaginary time direction in 2D. I show that the transition from the superfluid state in both 1D and 2D is always controlled by the random critical point. This arises due to a coupling constant in the dual theory with replicas which becomes generated at large distances by the random chemical potential, and represents a relevant perturbation at the pure superfluid-Mott insulator fixed point. At large distances the dual theory in 1D becomes equivalent to the Haldane's macroscopic representation of disordered quantum fluid, where the generated term is identified with random backscattering. In 2D the generated coupling corresponds to the random mass of the complex field which represents vortex loops. I calculate the critical exponents at the superfluid-Bose glass fixed point in 2D to be \nu=1.38 and z=1.93, and the universal conductivity at the transition \sigma_c = 0.26 e_{*}^2 /h, using the one-loop field-theoretic renormalization group in fixed dimension.Comment: 25 pages, 6 Postscript figures, LaTex, references updated, typos corrected, final version to appear in Phys. Rev. B, June 1, 199

    Critical behavior at superconductor-insulator phase transitions near one dimension

    Full text link
    I argue that the system of interacting bosons at zero temperature and in random external potential possesses a simple critical point which describes the proliferation of disorder-induced topological defects in the superfluid ground state, and which is located at weak disorder close to and above one dimension. This makes it possible to address the critical behavior at the superfluid-Bose glass transition in dirty boson systems by expanding around the lower critical dimension d=1. Within the formulated renormalization procedure near d=1 the dynamical critical exponent is obtained exactly and the correlation length exponent is calculated as a Laurent series in the parameter \sqrt{\epsilon}, with \epsilon=d-1: z=d, \nu=1/\sqrt{3\epsilon} for the short range, and z=1, \nu=\sqrt{2/3\epsilon}, for the long-range Coulomb interaction between bosons. The identified critical point should be stable against the residual perturbations in the effective action for the superfluid, at least in dimensions 1\leq d \leq 2, for both short-range and Coulomb interactions. For the superfluid-Mott insulator transition in the system in a periodic potential and at a commensurate density of bosons I find \nu=(1/2\sqrt{\epsilon})+ 1/4+O(\sqrt{\epsilon}), which yields a result reasonably close to the known XY critical exponent in d=2+1. The critical behavior of the superfluid density, phonon velocity and the compressibility in the system with the short-range interactions is discussed.Comment: 23 pages, 1 Postscript figure, LaTe

    Detection of adeno-associated virus type 2 genome in cervical carcinoma

    Get PDF
    Adeno-associated virus (AAV) can impair the replication of other viruses. Adeno-associated virus seroprevalences have been reported to be lower among women with cervical cancer. In-vitro, AAV can interfere with the production of human papillomavirus virions. Adeno-associated virus-2 DNA has also been detected in cervical cancer tissue, although not consistently. To evaluate the role of AAV infection in relation to invasive cervical cancer, we performed a nested case–control study within a retrospectively followed population-based cohort. A total of 104 women who developed invasive cervical cancer on average 5.6 years of follow-up (range: 0.5 months–26.2 years) and 104 matched control-women who did not develop cervical cancer during the same follow-up time were tested for AAV and human papillomavirus by polymerase chain reaction. At baseline, two (2%) case-women and three (3%) control-women were positive for AAV-2 DNA. At the time of cancer diagnosis, 12 (12%) case-women and 3 (3%) matched control-women were positive for AAV-2 DNA. Persisting AAV infection was not evident. In conclusion, AAV-2 DNA was present in a low proportion of cervical cancers and we found no evidence that the presence of AAV in cervical smears of healthy women would be associated with reduced risk of cervical cancer

    Cognitive Changes and Quality of Life in Neurocysticercosis: A Longitudinal Study

    Get PDF
    Neurocysticercosis (NCC) is one of the most common parasitic infections of the central nervous system. Cognitive changes have been frequently reported with this disease but have not been well studied. Our study team recruited a group of new onset NCC cases and a matched set of healthy neighborhood controls and new onset epilepsy controls in Lima, Peru for this study. A neuropsychological battery was administered at baseline and at 6 months to all groups. Brain MRI studies were also obtained on NCC cases at baseline and at 6 months. Newly diagnosed patients with NCC had mild cognitive deficits and more marked decreases in quality of life at baseline compared with controls. Improvements were found in both cognitive status and quality of life in patients with NCC after treatment. This study is the first to assess cognitive status and quality of life longitudinally in patients with NCC and provides new data on an important clinical morbidity outcome

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit
    • …
    corecore