10 research outputs found
An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides
BACKGROUND: The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. METHODOLOGY/PRINCIPAL FINDINGS: We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few alpha,alpha disubstituted, N-methyl and alpha-hydroxy derivatives, but no beta-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides
Autism genetics : opportunities and challenges for clinical translation
Genetic studies have revealed the involvement of hundreds of gene variants in autism. Their risk effects are highly variable, and they are frequently related to other conditions besides autism. However, many different variants converge on common biological pathways. These findings indicate that aetiological heterogeneity, variable penetrance and genetic pleiotropy are pervasive characteristics of autism genetics. Although this advancing insight should improve clinical care, at present there is a substantial discrepancy between research knowledge and its clinical application. In this Review, we discuss the current challenges and opportunities for the translation of autism genetics knowledge into clinical practice