108 research outputs found

    Potentially inappropriate prescriptions for older patients in long-term care

    Get PDF
    BACKGROUND: Inappropriate medication use is a major healthcare issue for the elderly population. This study explored the prevalence of potentially inappropriate prescriptions (PIPs) in long-term care in metropolitan Quebec. METHODS: A cross sectional chart review of 2,633 long-term care older patients of the Quebec City area was performed. An explicit criteria list for PIPs was developed based on the literature and validated by a modified Delphi method. Medication orders were reviewed to describe prescribing patterns and to determine the prevalence of PIPs. A multivariate analysis was performed to identify predictors of PIPs. RESULTS: Almost all residents (94.0%) were receiving one or more prescribed medication; on average patients had 4.8 prescribed medications. A majority (54.7%) of treated patients had a potentially inappropriate prescription (PIP). Most common PIPs were drug interactions (33.9% of treated patients), followed by potentially inappropriate duration (23.6%), potentially inappropriate medication (14.7%) and potentially inappropriate dosage (9.6%). PIPs were most frequent for medications of the central nervous system (10.8% of prescribed medication). The likelihood of PIP increased significantly as the number of drugs prescribed increased (odds ratio [OR]: 1.38, 95% confidence interval [CI]: 1.33 – 1.43) and with the length of stay (OR: 1.78, CI: 1.43 – 2.20). On the other hand, the risk of receiving a PIP decreased with age. CONCLUSION: Potentially inappropriate prescribing is a serious problem in the highly medicated long-term care population in metropolitan Quebec. Use of explicit criteria lists may help identify the most critical issues and prioritize interventions to improve quality of care and patient safety

    Yeast Screens Identify the RNA Polymerase II CTD and SPT5 as Relevant Targets of BRCA1 Interaction

    Get PDF
    BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression

    At What Stage of Neural Processing Does Cocaine Act to Boost Pursuit of Rewards?

    Get PDF
    Dopamine-containing neurons have been implicated in reward and decision making. One element of the supporting evidence is that cocaine, like other drugs that increase dopaminergic neurotransmission, powerfully potentiates reward seeking. We analyze this phenomenon from a novel perspective, introducing a new conceptual framework and new methodology for determining the stage(s) of neural processing at which drugs, lesions and physiological manipulations act to influence reward-seeking behavior. Cocaine strongly boosts the proclivity of rats to work for rewarding electrical brain stimulation. We show that the conventional conceptual framework and methods do not distinguish between three conflicting accounts of how the drug produces this effect: increased sensitivity of brain reward circuitry, increased gain, or decreased subjective reward costs. Sensitivity determines the stimulation strength required to produce a reward of a given intensity (a measure analogous to the KM of an enzyme) whereas gain determines the maximum intensity attainable (a measure analogous to the vmax of an enzyme-catalyzed reaction). To distinguish sensitivity changes from the other determinants, we measured and modeled reward seeking as a function of both stimulation strength and opportunity cost. The principal effect of cocaine was a two-fourfold increase in willingness to pay for the electrical reward, an effect consistent with increased gain or decreased subjective cost. This finding challenges the long-standing view that cocaine increases the sensitivity of brain reward circuitry. We discuss the implications of the results and the analytic approach for theories of how dopaminergic neurons and other diffuse modulatory brain systems contribute to reward pursuit, and we explore the implications of the conceptual framework for the study of natural rewards, drug reward, and mood

    Genomic copy number variation in Mus musculus.

    Get PDF
    BACKGROUND: Copy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously. RESULTS: We found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR). CONCLUSION: The analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies

    Resource Supply Overrides Temperature as a Controlling Factor of Marine Phytoplankton Growth

    Get PDF
    The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated

    Modelling of Autonomous Navigation for an Unmanned Aerial Vehicle Based on Video Stream.

    No full text
    • …
    corecore