5,314 research outputs found

    Saturation of dephasing time in mesoscopic devices produced by a ferromagnetic state

    Full text link
    We consider an exchange model of itinerant electrons in a Heisenberg ferromagnet and we assume that the ferromagnet is in a fully polarized state. Using the Holstein-Primakoff transformation we are able to obtain a boson-fermion Hamiltonian that is well-known in the interaction between light and matter. This model describes the spontaneous emission in two-level atoms that is the proper decoherence mechanism when the number of modes of the radiation field is taken increasingly large, the vacuum acting as a reservoir. In the same way one can see that the interaction between the bosonic modes of spin waves and an itinerant electron produces decoherence by spin flipping with a rate proportional to the size of the system. In this way we are able to show that the experiments on quantum dots, described in D. K. Ferry et al. [Phys. Rev. Lett. {\bf 82}, 4687 (1999)], and nanowires, described in D. Natelson et al. [Phys. Rev. Lett. {\bf 86}, 1821 (2001)], can be understood as the interaction of itinerant electrons and an electron gas in a fully polarized state.Comment: 10 pages, no figure. Changed title. Revised version accepted for publication in Physical Review

    Anisotropic Magnetoconductance in Quench-Condensed Ultrathin Beryllium Films

    Full text link
    Near the superconductor-insulator (S-I) transition, quench-condensed ultrathin Be films show a large magnetoconductance which is highly anisotropic in the direction of the applied field. Film conductance can drop as much as seven orders of magnitude in a weak perpendicular field (< 1 T), but is insensitive to a parallel field in the same field range. We believe that this negative magnetoconductance is due to the field de-phasing of the superconducting pair wavefunction. This idea enables us to extract the finite superconducting phase coherence length in nearly superconducting films. Our data indicate that this local phase coherence persists even in highly insulating films in the vicinity of the S-I transition.Comment: 4 pages, 4 figure RevTex, Typos Correcte

    Conductance fluctuations and weak localization in chaotic quantum dots

    Full text link
    We study the conductance statistical features of ballistic electrons flowing through a chaotic quantum dot. We show how the temperature affects the universal conductance fluctuations by analyzing the influence of dephasing and thermal smearing. This leads us to two main findings. First, we show that the energy correlations in the transmission, which were overlooked so far, are important for calculating the variance and higher moments of the conductance. Second, we show that there is an ambiguity in the method of determination of the dephasing rate from the size of the of the weak localization. We find that the dephasing times obtained at low temperatures from quantum dots are underestimated.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    The role of the cytoskeleton in capacitaftive calcium entry in myenteric glia

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73680/1/j.1365-2982.2003.00406.x.pd

    Star and Planet Formation with ALMA: an Overview

    Full text link
    Submillimeter observations with ALMA will be the essential next step in our understanding of how stars and planets form. Key projects range from detailed imaging of the collapse of pre-stellar cores and measuring the accretion rate of matter onto deeply embedded protostars, to unravelling the chemistry and dynamics of high-mass star-forming clusters and high-spatial resolution studies of protoplanetary disks down to the 1 AU scale.Comment: Invited review, 8 pages, 5 figures; to appear in the proceedings of "Science with ALMA: a New Era for Astrophysics". Astrophysics & Space Science, in pres
    • …
    corecore