14 research outputs found

    Analysis of energy fluxes estimations over Italy using time-differencing models based on thermal remote sensing data

    No full text
    Large area estimations of land surface fluxes can be a useful operational tool for up-scaling local measurements and can serve as an upper-boundary condition for higher spatial resolution applications. Given hourly measurements of radiometric surface temperature from a geostationary satellite, it is possible to derive the partitioning of energy fluxes based on the influence of the evapotranspiration process on morning surface temperature rise. In this work, the Atmosphere-Land Exchange Inverse (ALEXI) model and the Dual Temperature Difference (DTD) approach were applied in order to relate the sensible heat flux to time-differential remote observations of surface temperature obtained from Meteosat satellite data. Copyright © 2012 IAHS Press

    Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery

    No full text
    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (soil moisture, advection, air temperature) are affecting plant stress. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI) model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil+canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5–10 km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI), spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions of 30 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe and, Africa and other continents with geostationary satellite coverage

    Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery

    Get PDF
    Thermal infrared (TIR) remote sensing of landsurface temperature (LST) provides valuable information about the sub-surface moisture status required for estimating evapotranspiration (ET) and detecting the onset and severity of drought. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in onitoring ET and drought conditions over large areas, they may provide ambiguous results when other factors (e.g., air temperature, advection) are affecting plant functioning. A more physically based interpretation of LST and NDVI and their relationship to subsurface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. The Atmosphere-Land Exchange Inverse (ALEXI) model is a multi-sensor TIR approach to ET mapping, coupling a two-source (soil + canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map daily fluxes at continental scales and 5 to 10-km resolution using thermal band imagery and insolation estimates from geostationary satellites. A related algorithm (DisALEXI) spatially disaggregates ALEXI fluxes down to finer spatial scales using moderate resolution TIR imagery from polar orbiting satellites. An overview of this modeling approach is presented, along with strategies for fusing information from multiple satellite platforms and wavebands to map daily ET down to resolutions on the order of 10 m. The ALEXI/DisALEXI model has potential for global applications by integrating data from multiple geostationary meteorological satellite systems, such as the US Geostationary Operational Environmental Satellites, the European Meteosat satellites, the Chinese Fen-yung 2B series, and the Japanese Geostationary Meteorological Satellites. Work is underway to further evaluate multi-scale ALEXI implementations over the US, Europe, Africa and other continents with geostationary satellite coverage
    corecore