132 research outputs found

    Increasing physical activity in postpartum multiethnic women in Hawaii: results from a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mothers of an infant are much less likely to exercise regularly compared to other women. This study tested the efficacy of a brief tailored intervention to increase physical activity (PA) in women 3–12 months after childbirth. The study used a pretest-posttest design. Sedentary women (n = 20) were recruited from a parenting organization. Half the participants were ethnic minorities, mean age was 33 ± 3.8, infants' mean age was 6.9 ± 2.4 months, 50% were primiparas, and mean body mass index was 23.6 ± 4.2.</p> <p>Methods</p> <p>The two-month intervention included telephone counseling, pedometers, referral to community PA resources, social support, email advice on PA/pedometer goals, and newsletters.</p> <p>The primary outcome of the study was minutes per week of moderate and vigorous leisure-time physical activity measured by the Godin physical activity instrument.</p> <p>Results</p> <p>All women (100%) returned for post-test measures; thus, paired t-tests were used for pre-post increase in minutes of moderate and vigorous leisure-time physical activity and comparisons of moderate and vigorous leisure-time physical activity increases among ethnic groups. At baseline participants' reported a mean of 3 ± 13.4 minutes per week moderate and vigorous leisure-time physical activity. At post-test this significantly increased to 85.5 ± 76.4 minutes per week of moderate and vigorous leisure-time physical activity (p < .001, Cohen's d = 2.2; effect size r = 0.7). There were no differences in pre to post increases in minutes of moderate and vigorous leisure-time physical activity among races.</p> <p>Conclusion</p> <p>A telephone/email intervention tailored to meet the needs of postpartum women was effective in increasing physical activity levels. However, randomized trials comparing tailored telephone and email interventions to standard care and including long-term follow-up to determine maintenance of physical activity are warranted.</p

    CD152 (CTLA-4) Determines CD4 T Cell Migration In Vitro and In Vivo

    Get PDF
    BACKGROUND:Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration. METHODOLOGY/PRINCIPAL FINDINGS:We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo. CONCLUSIONS/SIGNIFICANCE:We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge

    T Cells' Immunological Synapses Induce Polarization of Brain Astrocytes In Vivo and In Vitro: A Novel Astrocyte Response Mechanism to Cellular Injury

    Get PDF
    Astrocytes usually respond to trauma, stroke, or neurodegeneration by undergoing cellular hypertrophy, yet, their response to a specific immune attack by T cells is poorly understood. Effector T cells establish specific contacts with target cells, known as immunological synapses, during clearance of virally infected cells from the brain. Immunological synapses mediate intercellular communication between T cells and target cells, both in vitro and in vivo. How target virally infected astrocytes respond to the formation of immunological synapses established by effector T cells is unknown.Herein we demonstrate that, as a consequence of T cell attack, infected astrocytes undergo dramatic morphological changes. From normally multipolar cells, they become unipolar, extending a major protrusion towards the immunological synapse formed by the effector T cells, and withdrawing most of their finer processes. Thus, target astrocytes become polarized towards the contacting T cells. The MTOC, the organizer of cell polarity, is localized to the base of the protrusion, and Golgi stacks are distributed throughout the protrusion, reaching distally towards the immunological synapse. Thus, rather than causing astrocyte hypertrophy, antiviral T cells cause a major structural reorganization of target virally infected astrocytes.Astrocyte polarization, as opposed to hypertrophy, in response to T cell attack may be due to T cells providing a very focused attack, and thus, astrocytes responding in a polarized manner. A similar polarization of Golgi stacks towards contacting T cells was also detected using an in vitro allogeneic model. Thus, different T cells are able to induce polarization of target astrocytes. Polarization of target astrocytes in response to immunological synapses may play an important role in regulating the outcome of the response of astrocytes to attacking effector T cells, whether during antiviral (e.g. infected during HIV, HTLV-1, HSV-1 or LCMV infection), anti-transplant, autoimmune, or anti-tumor immune responses in vivo and in vitro

    A Role for Rebinding in Rapid and Reliable T Cell Responses to Antigen

    Get PDF
    Experimental work has shown that T cells of the immune system rapidly and specifically respond to antigenic molecules presented on the surface of antigen-presenting-cells and are able to discriminate between potential stimuli based on the kinetic parameters of the T cell receptor-antigen bond. These antigenic molecules are presented among thousands of chemically similar endogenous peptides, raising the question of how T cells can reliably make a decision to respond to certain antigens but not others within minutes of encountering an antigen presenting cell. In this theoretical study, we investigate the role of localized rebinding between a T cell receptor and an antigen. We show that by allowing the signaling state of individual receptors to persist during brief unbinding events, T cells are able to discriminate antigens based on both their unbinding and rebinding rates. We demonstrate that T cell receptor coreceptors, but not receptor clustering, are important in promoting localized rebinding, and show that requiring rebinding for productive signaling reduces signals from a high concentration of endogenous pMHC. In developing our main results, we use a relatively simple model based on kinetic proofreading. However, we additionally show that all our results are recapitulated when we use a detailed T cell receptor signaling model. We discuss our results in the context of existing models and recent experimental work and propose new experiments to test our findings

    Induction of CD4+CD25+FOXP3+ Regulatory T Cells during Human Hookworm Infection Modulates Antigen-Mediated Lymphocyte Proliferation

    Get PDF
    Hookworm infection is considered one of the most important poverty-promoting neglected tropical diseases, infecting 576 to 740 million people worldwide, especially in the tropics and subtropics. These blood-feeding nematodes have a remarkable ability to downmodulate the host immune response, protecting themselves from elimination and minimizing severe host pathology. While several mechanisms may be involved in the immunomodulation by parasitic infection, experimental evidences have pointed toward the possible involvement of regulatory T cells (Tregs) in downregulating effector T-cell responses upon chronic infection. However, the role of Tregs cells in human hookworm infection is still poorly understood and has not been addressed yet. In the current study we observed an augmentation of circulating CD4+CD25+FOXP3+ regulatory T cells in hookworm-infected individuals compared with healthy non-infected donors. We have also demonstrated that infected individuals present higher levels of circulating Treg cells expressing CTLA-4, GITR, IL-10, TGF-β and IL-17. Moreover, we showed that hookworm crude antigen stimulation reduces the number of CD4+CD25+FOXP3+ T regulatory cells co-expressing IL-17 in infected individuals. Finally, PBMCs from infected individuals pulsed with excreted/secreted products or hookworm crude antigens presented an impaired cellular proliferation, which was partially augmented by the depletion of Treg cells. Our results suggest that Treg cells may play an important role in hookworm-induced immunosuppression, contributing to the longevity of hookworm survival in infected people

    Dendritic cells in cancer immunology and immunotherapy

    Get PDF
    Dendritic cells (DCs) are a diverse group of specialized antigen-presenting cells with key roles in the initiation and regulation of innate and adaptive immune responses. As such, there is currently much interest in modulating DC function to improve cancer immunotherapy. Many strategies have been developed to target DCs in cancer, such as the administration of antigens with immunomodulators that mobilize and activate endogenous DCs, as well as the generation of DC-based vaccines. A better understanding of the diversity and functions of DC subsets and of how these are shaped by the tumour microenvironment could lead to improved therapies for cancer. Here we will outline how different DC subsets influence immunity and tolerance in cancer settings and discuss the implications for both established cancer treatments and novel immunotherapy strategies.S.K.W. is supported by a European Molecular Biology Organization Long- Term Fellowship (grant ALTF 438– 2016) and a CNIC–International Postdoctoral Program Fellowship (grant 17230–2016). F.J.C. is the recipient of a PhD ‘La Caixa’ fellowship. Work in the D.S. laboratory is funded by the CNIC, by the European Research Council (ERC Consolidator Grant 2016 725091), by the European Commission (635122-PROCROP H2020), by the Ministerio de Ciencia, Innovación e Universidades (MCNU), Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (FEDER) (SAF2016-79040-R), by the Comunidad de Madrid (B2017/BMD-3733 Immunothercan- CM), by FIS- Instituto de Salud Carlos III, MCNU and FEDER (RD16/0015/0018-REEM), by Acteria Foundation, by Atresmedia (Constantes y Vitales prize) and by Fundació La Marató de TV3 (201723). The CNIC is supported by the Instituto de Salud Carlos III, the MCNU and the Pro CNIC Foundation, and is a Severo Ochoa Centre of Excellence (SEV-2015-0505).S

    Alternative splicing: the pledge, the turn, and the prestige

    Get PDF
    • …
    corecore