2,467 research outputs found
Online genetic databases informing human genome epidemiology.
BACKGROUND: With the advent of high throughput genotyping technology and the information available via projects such as the human genome sequencing and the HapMap project, more and more data relevant to the study of genetics and disease risk will be produced. Systematic reviews and meta-analyses of human genome epidemiology studies rely on the ability to identify relevant studies and to obtain suitable data from these studies. A first port of call for most such reviews is a search of MEDLINE. We examined whether this could be usefully supplemented by identifying databases on the World Wide Web that contain genetic epidemiological information. METHODS: We conducted a systematic search for online databases containing genetic epidemiological information on gene prevalence or gene-disease association. In those containing information on genetic association studies, we examined what additional information could be obtained to supplement a MEDLINE literature search. RESULTS: We identified 111 databases containing prevalence data, 67 databases specific to a single gene and only 13 that contained information on gene-disease associations. Most of the latter 13 databases were linked to MEDLINE, although five contained information that may not be available from other sources. CONCLUSION: There is no single resource of structured data from genetic association studies covering multiple diseases, and in relation to the number of studies being conducted there is very little information specific to gene-disease association studies currently available on the World Wide Web. Until comprehensive data repositories are created and utilized regularly, new data will remain largely inaccessible to many systematic review authors and meta-analysts
Non-invasive prenatal diagnostic test accuracy for fetal sex using cell-free DNA a review and meta-analysis
Background: Cell-free fetal DNA (cffDNA) can be detected in maternal blood during pregnancy, opening the possibility of early non-invasive prenatal diagnosis for a variety of genetic conditions. Since 1997, many studies have examined the accuracy of prenatal fetal sex determination using cffDNA, particularly for pregnancies at risk of an X-linked condition. Here we report a review and meta-analysis of the published literature to evaluate the use of cffDNA for prenatal determination (diagnosis) of fetal sex. We applied a sensitive search of multiple bibliographic databases including PubMed (MEDLINE), EMBASE, the Cochrane library and Web of Science. Results: Ninety studies, incorporating 9,965 pregnancies and 10,587 fetal sex results met our inclusion criteria. Overall mean sensitivity was 96.6% (95% credible interval 95.2% to 97.7%) and mean specificity was 98.9% (95% CI = 98.1% to 99.4%). These results vary very little with trimester or week of testing, indicating that the performance of the test is reliably high. Conclusions: Based on this review and meta-analysis we conclude that fetal sex can be determined with a high level of accuracy by analyzing cffDNA. Using cffDNA in prenatal diagnosis to replace or complement existing invasive methods can remove or reduce the risk of miscarriage. Future work should concentrate on the economic and ethical considerations of implementing an early non-invasive test for fetal sex
Data extraction methods for systematic review (semi)automation: A living systematic review [version 1; peer review: awaiting peer review]
Background: The reliable and usable (semi)automation of data
extraction can support the field of systematic review by reducing the
workload required to gather information about the conduct and
results of the included studies. This living systematic review examines
published approaches for data extraction from reports of clinical
studies.
Methods: We systematically and continually search MEDLINE,
Institute of Electrical and Electronics Engineers (IEEE), arXiv, and the
dblp computer science bibliography databases. Full text screening and
data extraction are conducted within an open-source living systematic
review application created for the purpose of this review. This
iteration of the living review includes publications up to a cut-off date
of 22 April 2020.
Results: In total, 53 publications are included in this version of our
review. Of these, 41 (77%) of the publications addressed extraction of
data from abstracts, while 14 (26%) used full texts. A total of 48 (90%)
publications developed and evaluated classifiers that used
randomised controlled trials as the main target texts. Over 30 entities
were extracted, with PICOs (population, intervention, comparator,
outcome) being the most frequently extracted. A description of their
datasets was provided by 49 publications (94%), but only seven (13%)
made the data publicly available. Code was made available by 10 (19%)
publications, and five (9%) implemented publicly available tools.
Conclusions: This living systematic review presents an overview of
(semi)automated data-extraction literature of interest to different
types of systematic review. We identified a broad evidence base of
publications describing data extraction for interventional reviews and
a small number of publications extracting epidemiological or diagnostic accuracy data. The lack of publicly available gold-standard
data for evaluation, and lack of application thereof, makes it difficult
to draw conclusions on which is the best-performing system for each
data extraction target. With this living review we aim to review the
literature continually
The Impact of Study Size on Meta-analyses: Examination of Underpowered Studies in Cochrane Reviews
Background: Most meta-analyses include data from one or more small studies that, individually, do not have power to
detect an intervention effect. The relative influence of adequately powered and underpowered studies in published metaanalyses
has not previously been explored. We examine the distribution of power available in studies within meta-analyses
published in Cochrane reviews, and investigate the impact of underpowered studies on meta-analysis results.
Methods and Findings: For 14,886 meta-analyses of binary outcomes from 1,991 Cochrane reviews, we calculated power
per study within each meta-analysis. We defined adequate power as $50% power to detect a 30% relative risk reduction. In
a subset of 1,107 meta-analyses including 5 or more studies with at least two adequately powered and at least one
underpowered, results were compared with and without underpowered studies. In 10,492 (70%) of 14,886 meta-analyses, all
included studies were underpowered; only 2,588 (17%) included at least two adequately powered studies. 34% of the metaanalyses
themselves were adequately powered. The median of summary relative risks was 0.75 across all meta-analyses
(inter-quartile range 0.55 to 0.89). In the subset examined, odds ratios in underpowered studies were 15% lower (95% CI
11% to 18%, P,0.0001) than in adequately powered studies, in meta-analyses of controlled pharmacological trials; and 12%
lower (95% CI 7% to 17%, P,0.0001) in meta-analyses of controlled non-pharmacological trials. The standard error of the
intervention effect increased by a median of 11% (inter-quartile range 21% to 35%) when underpowered studies were
omitted; and between-study heterogeneity tended to decrease.
Conclusions: When at least two adequately powered studies are available in meta-analyses reported by Cochrane reviews,
underpowered studies often contribute little information, and could be left out if a rapid review of the evidence is required.
However, underpowered studies made up the entirety of the evidence in most Cochrane reviews
Label-invariant models for the analysis of meta-epidemiological data.
Rich meta-epidemiological data sets have been collected to explore associations between intervention effect estimates and study-level characteristics. Welton et al proposed models for the analysis of meta-epidemiological data, but these models are restrictive because they force heterogeneity among studies with a particular characteristic to be at least as large as that among studies without the characteristic. In this paper we present alternative models that are invariant to the labels defining the 2 categories of studies. To exemplify the methods, we use a collection of meta-analyses in which the Cochrane Risk of Bias tool has been implemented. We first investigate the influence of small trial sample sizes (less than 100 participants), before investigating the influence of multiple methodological flaws (inadequate or unclear sequence generation, allocation concealment, and blinding). We fit both the Welton et al model and our proposed label-invariant model and compare the results. Estimates of mean bias associated with the trial characteristics and of between-trial variances are not very sensitive to the choice of model. Results from fitting a univariable model show that heterogeneity variance is, on average, 88% greater among trials with less than 100 participants. On the basis of a multivariable model, heterogeneity variance is, on average, 25% greater among trials with inadequate/unclear sequence generation, 51% greater among trials with inadequate/unclear blinding, and 23% lower among trials with inadequate/unclear allocation concealment, although the 95% intervals for these ratios are very wide. Our proposed label-invariant models for meta-epidemiological data analysis facilitate investigations of between-study heterogeneity attributable to certain study characteristics
Dealing with substantial heterogeneity in Cochrane reviews. Cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Dealing with heterogeneity in meta-analyses is often tricky, and there is only limited advice for authors on what to do. We investigated how authors addressed different degrees of heterogeneity, in particular whether they used a fixed effect model, which assumes that all the included studies are estimating the same true effect, or a random effects model where this is not assumed.</p> <p>Methods</p> <p>We sampled randomly 60 Cochrane reviews from 2008, which presented a result in its first meta-analysis with substantial heterogeneity (I<sup>2 </sup>greater than 50%, i.e. more than 50% of the variation is due to heterogeneity rather than chance). We extracted information on choice of statistical model, how the authors had handled the heterogeneity, and assessed the methodological quality of the reviews in relation to this.</p> <p>Results</p> <p>The distribution of heterogeneity was rather uniform in the whole I<sup>2 </sup>interval, 50-100%. A fixed effect model was used in 33 reviews (55%), but there was no correlation between I<sup>2 </sup>and choice of model (P = 0.79). We considered that 20 reviews (33%), 16 of which had used a fixed effect model, had major problems. The most common problems were: use of a fixed effect model and lack of rationale for choice of that model, lack of comment on even severe heterogeneity and of reservations and explanations of its likely causes. The problematic reviews had significantly fewer included trials than other reviews (4.3 vs. 8.0, P = 0.024). The problems became less pronounced with time, as those reviews that were most recently updated more often used a random effects model.</p> <p>Conclusion</p> <p>One-third of Cochrane reviews with substantial heterogeneity had major problems in relation to their handling of heterogeneity. More attention is needed to this issue, as the problems we identified can be essential for the conclusions of the reviews.</p
Subgroup effects despite homogeneous heterogeneity test results
Background. Statistical tests of heterogeneity are very popular in meta-analyses, as heterogeneity might indicate subgroup effects. Lack of demonstrable statistical heterogeneity, however, might obscure clinical heterogeneity, meaning clinically relevant subgroup effects. Methods. A qualitative, visual method to explore the potential for subgroup effects was provided by a modification of the forest plot, i.e., adding a vertical axis indicating the proportion of a subgroup variable in the individual trials. Such a plot was used to assess the potential for clinically relevant subgroup effects and was illustrated by a clinical example on the effects of antibiotics in children with acute otitis media. Results. Statistical tests did not indicate heterogeneity in the meta-analysis on the effects of amoxicillin on acute otitis media (Q = 3.29, p = 0.51; I2 = 0%; T2 = 0). Nevertheless, in a modified forest plot, in which the individual trials were ordered by the proportion of children with bilateral otitis, a clear relation between bilaterality and treatment effects was observed (which was also found in an individual patient data meta-analysis of the included trials: p-value for interaction 0.021). Conclusions. A modification of the forest plot, by including an additional (vertical) axis indicating the proportion of a certain subgroup variable, is a qualitative, visual, and easy-to-interpret method to explore potential subgroup effects in studies included in meta-analyse
- …