3 research outputs found

    Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery.

    No full text
    Activation of both small-conductance (SKCa) and intermediate-conductance (IKCa) Ca2+-activated K+ channels in endothelial cells leads to vascular smooth muscle hyperpolarization and relaxation in rat mesenteric arteries. The contribution that each endothelial K+ channel type makes to the smooth muscle hyperpolarization is unknown. In the presence of a nitric oxide (NO) synthase inhibitor, ACh evoked endothelium and concentration-dependent smooth muscle hyperpolarization, increasing the resting potential (approx. -53 mV) by around 20 mV at 3 microM. Similar hyperpolarization was evoked with cyclopiazonic acid (10 microM, an inhibitor of sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA)) while 1-EBIO (300 microM, an IKCa activator) only increased the potential by a few millivolts. Hyperpolarization in response to either ACh or CPA was abolished with apamin (50 nM, an SKCa blocker) but was unaltered by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (1 microM TRAM-34, an IKCa blocker). During depolarization and contraction in response to phenylephrine (PE), ACh still increased the membrane potential to around -70 mV, but with apamin present the membrane potential only increased just beyond the original resting potential (circa -58 mV). TRAM-34 alone did not affect hyperpolarization to ACh but, in combination with apamin, ACh-evoked hyperpolarization was completely abolished. These data suggest that true endothelium-dependent hyperpolarization of smooth muscle cells in response to ACh is attributable to SKCa channels, whereas IKCa channels play an important role during the ACh-mediated repolarization phase only observed following depolarization

    Role of the RhoA/Rho-kinase system in flow-related remodeling of rat mesenteric small arteries in vivo

    No full text
    In small arteries, a chronic blood flow reduction leads to inward hypotrophic remodeling, while a chronic blood flow elevation induces outward hypertrophic remodeling. The RhoA/Rho kinase system was shown to be modulated by shear stress, and to be involved in other kinds of vascular remodeling. The aim of this study was to investigate the role of RhoA/Rho kinase in flow-related small artery remodeling. Rat mesenteric small arteries were subjected to flow-modifying surgery. After 1, 2, 4, 16, and 32 days, the animals were sacrificed and small arteries were harvested. Messenger RNA was isolated and amplified. Using cDNA microarray analysis, the differential expression of >14,000 genes was analyzed, part of which was confirmed by RT-PCR. In vivo treatment with fasudil (3 mg/kg/day s.c.) was used to test the effect of Rho kinase inhibition. The main findings are that: (1) blood flow alteration modified the expression of approximately 5% of the genes by >2-fold, (2) flow reduction downregulated many RhoA-related cytoskeletal markers of smooth muscle cell phenotype, (3) many RhoA-related genes were rapidly

    The role of angiotensin II in regulating vascular structural and functional changes in hypertension

    No full text
    A major hemodynamic abnormality in hypertension is increased peripheral resistance due to changes in vascular structure and function. Structural changes include reduced lumen diameter and arterial wall thickening. Functional changes include increased vasoconstriction and/or decreased vasodilation. These processes are influenced by many humoral factors, of which angiotensin II (Ang II) seems to be critical. At the cellular level, Ang II stimulates vascular smooth muscle cell growth, increases collagen deposition, induces inflammation, increases contractility, and decreases dilation. Molecular mechanisms associated with these changes in hypertension include upregulation of many signaling pathways, including tyrosine kinases, mitogen-activated protein kinases, RhoA/Rho kinase, and increased generation of reactive oxygen species. This review focuses on the role of Ang II in vascular functional and structural changes of small arteries in hypertension. In addition, cellular processes whereby Ang II influences vessels in hypertension are discussed. Finally, novel concepts related to signaling pathways by which Ang II regulates vascular smooth muscle cells in hypertension are introduced
    corecore