3 research outputs found

    Using Noun Phrases for Navigating Biomedical Literature on Pubmed: How Many Updates Are We Losing Track of?

    Get PDF
    Author-supplied citations are a fraction of the related literature for a paper. The “related citations” on PubMed is typically dozens or hundreds of results long, and does not offer hints why these results are related. Using noun phrases derived from the sentences of the paper, we show it is possible to more transparently navigate to PubMed updates through search terms that can associate a paper with its citations. The algorithm to generate these search terms involved automatically extracting noun phrases from the paper using natural language processing tools, and ranking them by the number of occurrences in the paper compared to the number of occurrences on the web. We define search queries having at least one instance of overlap between the author-supplied citations of the paper and the top 20 search results as citation validated (CV). When the overlapping citations were written by same authors as the paper itself, we define it as CV-S and different authors is defined as CV-D. For a systematic sample of 883 papers on PubMed Central, at least one of the search terms for 86% of the papers is CV-D versus 65% for the top 20 PubMed “related citations.” We hypothesize these quantities computed for the 20 million papers on PubMed to differ within 5% of these percentages. Averaged across all 883 papers, 5 search terms are CV-D, and 10 search terms are CV-S, and 6 unique citations validate these searches. Potentially related literature uncovered by citation-validated searches (either CV-S or CV-D) are on the order of ten per paper – many more if the remaining searches that are not citation-validated are taken into account. The significance and relationship of each search result to the paper can only be vetted and explained by a researcher with knowledge of or interest in that paper

    The classical twin study and beyond

    Get PDF
    Twin studies have been a valuable source of information about the genetic basis of complex traits. To maximize the potential of twin studies, large, worldwide registers of data on twins and their relatives have been established. Here, we provide an overview of the current resources for twin research. These can be used to obtain insights into the genetic epidemiology of complex traits and diseases, to study the interaction of genotype with sex, age and lifestyle factors, and to study the causes of co-morbidity between traits and diseases. Because of their design, these registers offer unique opportunities for selected sampling for quantitative trait loci linkage and association studies
    corecore