42 research outputs found

    Superlattices: problems and new opportunities, nanosolids

    Get PDF
    Superlattices were introduced 40 years ago as man-made solids to enrich the class of materials for electronic and optoelectronic applications. The field metamorphosed to quantum wells and quantum dots, with ever decreasing dimensions dictated by the technological advancements in nanometer regime. In recent years, the field has gone beyond semiconductors to metals and organic solids. Superlattice is simply a way of forming a uniform continuum for whatever purpose at hand. There are problems with doping, defect-induced random switching, and I/O involving quantum dots. However, new opportunities in component-based nanostructures may lead the field of endeavor to new heights. The all important translational symmetry of solids is relaxed and local symmetry is needed in nanosolids

    Shot noise in mesoscopic systems

    Get PDF
    This is a review of shot noise, the time-dependent fluctuations in the electrical current due to the discreteness of the electron charge, in small conductors. The shot-noise power can be smaller than that of a Poisson process as a result of correlations in the electron transmission imposed by the Pauli principle. This suppression takes on simple universal values in a symmetric double-barrier junction (suppression factor 1/2), a disordered metal (factor 1/3), and a chaotic cavity (factor 1/4). Loss of phase coherence has no effect on this shot-noise suppression, while thermalization of the electrons due to electron-electron scattering increases the shot noise slightly. Sub-Poissonian shot noise has been observed experimentally. So far unobserved phenomena involve the interplay of shot noise with the Aharonov-Bohm effect, Andreev reflection, and the fractional quantum Hall effect.Comment: 37 pages, Latex, 10 figures (eps). To be published in "Mesoscopic Electron Transport," edited by L. P. Kouwenhoven, G. Schoen, and L. L. Sohn, NATO ASI Series E (Kluwer Academic Publishing, Dordrecht

    Shot Noise in Mesoscopic Systems

    Full text link

    Monolithic Microresonator Arrays of Optical Switches

    No full text

    Phase matching using an isotropic nonlinear optical material

    No full text
    Frequency conversion in nonlinear optical crystals is an effective means of generating coherent light at frequencies where lasers perform poorly or are unavailable. For efficient conversion, it is necessary to compensate for optical dispersion, which results in different phase velocities for light of different frequencies. In anisotropic birefringent crystals such as LiNbO3 or KH2PO4 ('KDP'), phase matching can be achieved between electromagnetic waves having different polarizations. But this is not possible for optically isotropic materials, and as a result, cubic materials such as GaAs (which otherwise have attractive nonlinear optical properties) were little exploited for frequency conversion applications. Quasi-phase-matching schemes, which have achieved considerable success in LiNbO3, provide a route to circumventing this problem, but the difficulty of producing the required pattern of nonlinear properties in isotropic materials, particularly semiconductors, has limited the practical utility of such approaches. Here we demonstrate a different route to phase matching-based on a concept proposed by Van der Ziel 22 yr ago (Appl. Phys. Lett., 1975) which exploits the artificial birefringence of multilayer composites of GaAs and oxidized AlAs. As GaAs is the material of choice for semiconductor lasers, such optical sources could be integrated in the core of frequency converters based on these composite structures. [on SciFinder (R)
    corecore