26 research outputs found

    Red Fluorescent Protein-Aequorin Fusions as Improved Bioluminescent Ca2+ Reporters in Single Cells and Mice

    Get PDF
    Bioluminescence recording of Ca2+ signals with the photoprotein aequorin does not require radiative energy input and can be measured with a low background and good temporal resolution. Shifting aequorin emission to longer wavelengths occurs naturally in the jellyfish Aequorea victoria by bioluminescence resonance energy transfer (BRET) to the green fluorescent protein (GFP). This process has been reproduced in the molecular fusions GFP-aequorin and monomeric red fluorescent protein (mRFP)-aequorin, but the latter showed limited transfer efficiency. Fusions with strong red emission would facilitate the simultaneous imaging of Ca2+ in various cell compartments. In addition, they would also serve to monitor Ca2+ in living organisms since red light is able to cross animal tissues with less scattering. In this study, aequorin was fused to orange and various red fluorescent proteins to identify the best acceptor in red emission bands. Tandem-dimer Tomato-aequorin (tdTA) showed the highest BRET efficiency (largest energy transfer critical distance R0) and percentage of counts in the red band of all the fusions studied. In addition, red fluorophore maturation of tdTA within cells was faster than that of other fusions. Light output was sufficient to image ATP-induced Ca2+ oscillations in single HeLa cells expressing tdTA. Ca2+ rises caused by depolarization of mouse neuronal cells in primary culture were also recorded, and changes in fine neuronal projections were spatially resolved. Finally, it was also possible to visualize the Ca2+ activity of HeLa cells injected subcutaneously into mice, and Ca2+ signals after depositing recombinant tdTA in muscle or the peritoneal cavity. Here we report that tdTA is the brightest red bioluminescent Ca2+ sensor reported to date and is, therefore, a promising probe to study Ca2+ dynamics in whole organisms or tissues expressing the transgene

    Niclosamide Suppresses Cancer Cell Growth By Inducing Wnt Co-Receptor LRP6 Degradation and Inhibiting the Wnt/Ξ²-Catenin Pathway

    Get PDF
    The Wnt/Ξ²-catenin signaling pathway is important for tumor initiation and progression. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/Ξ²-catenin signaling and represents a promising anticancer target. Recently, the antihelminthic drug, niclosamide was found to inhibit Wnt/Ξ²-catenin signaling, although the mechanism was not well defined. We found that niclosamide was able to suppress LRP6 expression and phosphorylation, block Wnt3A-induced Ξ²-catenin accumulation, and inhibit Wnt/Ξ²-catenin signaling in HEK293 cells. Furthermore, the inhibitory effects of niclosamide on LRP6 expression/phosphorylation and Wnt/Ξ²-catenin signaling were conformed in human prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. Moreover, we showed that the mechanism by which niclosamide suppressed LRP6 resulted from increased degradation as evident by a shorter half-life. Finally, we demonstrated that niclosamide was able to induce cancer cell apoptosis, and displayed excellent anticancer activity with IC50 values less than 1 Β΅M for prostate PC-3 and DU145 and breast MDA-MB-231 and T-47D cancer cells. The IC50 values are comparable to those shown to suppress the activities of Wnt/Ξ²-catenin signaling in prostate and breast cancer cells. Our data indicate that niclosamide is a unique small molecule Wnt/Ξ²-catenin signaling inhibitor targeting the Wnt co-receptor LRP6 on the cell surface, and that niclosamide has a potential to be developed a novel chemopreventive or therapeutic agent for human prostate and breast cancer

    Effects of an Educational Intervention on Residents' Knowledge and Attitudes Toward Interactions with Pharmaceutical Representatives

    No full text
    To assess primary care resident and faculty knowledge and attitudes concerning interactions between physicians and pharmaceutical representatives (PRs) and to measure changes in residents' knowledge and attitudes after an educational intervention, we conducted preintervention and postintervention surveys with a causal-comparative group in a university-based primary care residency program. All primary care internal medicine and internal medicine-pediatrics residents and faculty were given the voluntary survey. In general, residents and faculty demonstrated similar responses for the preintervention survey. Differences between faculty and resident opinions were seen in two areas. Faculty were more likely than residents to believe that PRs sometimes use unethical marketing practices (p < .05) and that the amount of contact with PRs in the outpatient clinic is excessive (p < .01). The postintervention survey of residents demonstrated significant differences between the control and intervention groups for three attitude scales. After the intervention, residents showed an increased belief that PRs may use unethical marketing practices (p < .01), that marketing gifts with no patient benefit may be inappropriate (p=.05), and that other physicians' prescribing patterns could be negatively influenced through the acceptance of gifts (p < .05). A brief educational intervention can change resident attitudes concerning physician interactions with PRs
    corecore