50,998 research outputs found
Cognitive node selection and assignment algorithms for weighted cooperative sensing in radar systems
Superior removal of arsenic from water with zirconium metal-organic framework UiO-66
10.1038/srep16613Scientific Reports51661
A metal–organic framework/α-alumina composite with a novel geometry for enhanced adsorptive separation
The development of a metal–organic framework/α-alumina composite leads to a novel concept: efficient adsorption occurs within a plurality of radial micro-channels with no loss of the active adsorbents during the process. This composite can effectively remediate arsenic contaminated water producing potable water recovery, whereas the conventional fixed bed requires eight times the amount of active adsorbents to achieve a similar performance
Protein kinase A (PKA) phosphorylation of Shp2 inhibits its phosphatase activity and modulates ligand specificity.
Pathological cardiac hypertrophy (an increase in cardiac mass resulting from stress-induced cardiac myocyte growth) is a major factor underlying heart failure. Src homology 2 domain-containing phosphatase (Shp2) is critical for cardiac function as mutations resulting in loss of Shp2 catalytic activity are associated with congenital cardiac defects and hypertrophy. We have identified a novel mechanism of Shp2 inhibition that may promote cardiac hypertrophy. We demonstrate that Shp2 is a component of the A-kinase anchoring protein (AKAP)-Lbc complex. AKAP-Lbc facilitates protein kinase A (PKA) phosphorylation of Shp2, which inhibits Shp2 phosphatase activity. We have identified two key amino acids in Shp2 that are phosphorylated by PKA: Thr73 contributes a helix-cap to helix αB within the N-terminal SH2 domain of Shp2, whereas Ser189 occupies an equivalent position within the C-terminal SH2 domain. Utilizing double mutant PKA phospho-deficient (T73A/S189A) and phospho-mimetic (T73D/S189D) constructs, in vitro binding assays, and phosphatase activity assays, we demonstrate that phosphorylation of these residues disrupts Shp2 interaction with tyrosine-phosphorylated ligands and inhibits its protein tyrosine phosphatase activity. Overall, our data indicate that AKAP-Lbc integrates PKA and Shp2 signaling in the heart and that AKAP-Lbc-associated Shp2 activity is reduced in hypertrophic hearts in response to chronic β-adrenergic stimulation and PKA activation. Thus, while induction of cardiac hypertrophy is a multifaceted process, inhibition of Shp2 activity through AKAP-Lbc-anchored PKA is a previously unrecognized mechanism that may promote this compensatory response
Crystallization and preliminary crystallographic data for the augmenter of liver regeneration
A new cellular growth factor termed augmenter of liver regeneration (ALR) has been crystallized. ALR has been shown to have a proliferative effect on liver cells while at the same time producing an immunosuppressive effect on liver-resident natural killer cells and liver-resident mononuclear leukocytes. In addition, ALR appears to play an important role in the synthesis and stabilization of mitochondrial gene transcripts inactively regenerating cells. ALR crystals diffract to beyond 2 Å resolution and belong to space group P21212, with a = 125.1, b = 108.1 and c = 38.5 Å. Based on four molecules per asymmetric unit, the Matthews coefficient is calculated to be 2.16 Å3 Da-1 which corresponds to a solvent content of 43%
A DEM investigation of water-bridged granular materials at the critical state
The critical state is an important concept for saturated and partially saturated granular materials as the strength and volume become constant and unique under continuous shear. By incorporating the water bridge effect, the mechanical behaviours of wet granular matters can be studied by the discrete element method (DEM). A series of DEM simulations are performed following the conventional triaxial loading path for dry and wet granular materials, and different suction values are applied at various confining stress levels. Unique critical state behaviours have been observed in both macroscopic and microscopic scales. It shows that the confining stress level plays an important role in the critical state behaviour of wet granular materials. The critical stress ratio for a wet material is not a constant value at different stress levels, and it is found that both the critical stress ratio and void ratio in wet granular matters are also much higher with a low confining stress. A framework is proposed by considering both the contact stress and the capillary stress effects to model the critical state lines. At large strain, the coordination number, the mean inter-particle force and fabric anisotropies evolve to constant critical state values for both dry and wet materials. The macro-parameters formulating the critical state stress ratio are found to be associated with the critical state anisotropies in solid skeleton and water phase fabrics, respectively
- …