265 research outputs found

    Charged Magnetic Brane Solutions in AdS_5 and the fate of the third law of thermodynamics

    Get PDF
    We construct asymptotically AdS_5 solutions to 5-dimensional Einstein-Maxwell theory with Chern-Simons term which are dual to 4-dimensional gauge theories, including N=4 SYM theory, in the presence of a constant background magnetic field B and a uniform electric charge density \rho. For the solutions corresponding to supersymmetric gauge theories, we find numerically that a small magnetic field causes a drastic decrease in the entropy at low temperatures. The near-horizon AdS_2 \times R^3 geometry of the purely electrically charged brane thus appears to be unstable under the addition of a small magnetic field. Based on this observation, we propose a formulation of the third law of thermodynamics (or Nernst theorem) that can be applied to black holes in the AdS/CFT context. We also find interesting behavior for smaller, non-supersymmetric, values of the Chern-Simons coupling k. For k=1 we exhibit exact solutions corresponding to warped AdS_3 black holes, and show that these can be connected to asymptotically AdS_5 spacetime. For k\leq 1 the entropy appears to go to a finite value at extremality, but the solutions still exhibit a mild singularity at strictly zero temperature. In addition to our numerics, we carry out a complete perturbative analysis valid to order B^2, and find that this corroborates our numerical results insofar as they overlap.Comment: 45 pages v2: added note about subsequent results found in arXiv:1003.130

    The dynamics of apparent horizons in Robinson-Trautman spacetimes

    Full text link
    We present an alternative scheme of finding apparent horizons based on spectral methods applied to Robinson-Trautman spacetimes. We have considered distinct initial data such as representing the spheroids of matter and the head-on collision of two non-rotating black holes. The evolution of the apparent horizon is presented. We have obtained in some cases a mass gap between the final Bondi and apparent horizon masses, whose implications were briefly commented in the light of the thermodynamics of black holes.Comment: 9 pages, 7 figure

    All solutions of the localization equations for N=2 quantum black hole entropy

    Full text link
    We find the most general bosonic solution to the localization equations describing the contributions to the quantum entropy of supersymmetric black holes in four-dimensional N=2 supergravity coupled to n_v vector multiplets. This requires the analysis of the BPS equations of the corresponding off-shell supergravity (including fluctuations of the auxiliary fields) with AdS2 \times S2 attractor boundary conditions. Our work completes and extends the results of arXiv:1012.0265 that were obtained for the vector multiplet sector, to include the fluctuations of all the fields of the off-shell supergravity. We find that, when the auxiliary SU(2) gauge field strength vanishes, the most general supersymmetric configuration preserving four supercharges is labelled by n_v+1 real parameters corresponding to the excitations of the conformal mode of the graviton and the scalars of the n_v vector multiplets. In the general case, the localization manifold is labelled by an additional SU(2) triplet of one-forms and a scalar function.Comment: 27 page

    Compactification on negatively curved manifolds

    Get PDF
    We show that string/M theory compactifications to maximally symmetric space-times using manifolds whose scalar curvature is everywhere negative, must have significant warping, large stringy corrections, or both.Comment: 18 pages, JHEP3.cl

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Moduli and electromagnetic black brane holography

    Get PDF
    We investigate the thermodynamic and hydrodynamic properties of 4-dimensional gauge theories with finite electric charge density in the presence of a constant magnetic field. Their gravity duals are planar magnetically and electrically charged AdS black holes in theories that contain a gauge Chern-Simons term. We present a careful analysis of the near horizon geometry of these black branes at finite and zero temperature for the case of a scalar field non-minimally coupled to the electromagnetic field. With the knowledge of the near horizon data, we obtain analytic expressions for the shear viscosity coefficient and entropy density, and also study the effect of a generic set of four derivative interactions on their ratio. We also comment on the attractor flows of the extremal solutions.Comment: 39 pages, no figures; v2: minor changes, refs. added; v3: typo fixed; v4: a proof for decoupling of the viscosity mode added in appendix, matches the published versio

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol

    Testing A (Stringy) Model of Quantum Gravity

    Get PDF
    I discuss a specific model of space-time foam, inspired by the modern non-perturbative approach to string theory (D-branes). The model views our world as a three brane, intersecting with D-particles that represent stringy quantum gravity effects, which can be real or virtual. In this picture, matter is represented generically by (closed or open) strings on the D3 brane propagating in such a background. Scattering of the (matter) strings off the D-particles causes recoil of the latter, which in turn results in a distortion of the surrounding space-time fluid and the formation of (microscopic, i.e. Planckian size) horizons around the defects. As a mean-field result, the dispersion relation of the various particle excitations is modified, leading to non-trivial optical properties of the space time, for instance a non-trivial refractive index for the case of photons or other massless probes. Such models make falsifiable predictions, that may be tested experimentally in the foreseeable future. I describe a few such tests, ranging from observations of light from distant gamma-ray-bursters and ultra high energy cosmic rays, to tests using gravity-wave interferometric devices and terrestrial particle physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings style. Invited talk at the third international conference on Dark Matter in Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200

    Homocysteine, Grey Matter and Cognitive Function in Adults with Cardiovascular Disease

    Get PDF
    Background: Elevated total plasma homocysteine (tHcy) has been associated with cognitive impairment, vascular disease and brain atrophy. Methods: We investigated 150 volunteers to determine if the association between high tHcy and cerebral grey matter volume and cognitive function is independent of cardiovascular disease. Results: Participants with high tHcy ($15 mmol/L) showed a widespread relative loss of grey matter compared with people with normal tHcy, although differences between the groups were minimal once the analyses were adjusted for age, gender, diabetes, hypertension, smoking and prevalent cardiovascular disease. Individuals with high tHcy had worse cognitive scores across a range of domains and less total grey matter volume, although these differences were not significant in the adjusted models. Conclusions: Our results suggest that the association between high tHcy and loss of cerebral grey matter volume and decline in cognitive function is largely explained by increasing age and cardiovascular diseases and indicate that th
    corecore