42 research outputs found

    Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells

    Get PDF
    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma

    Human T lymphocyte activation by monoclonal antibodies; OKT3, but not UCHT1, triggers mitogenesis via an interleukin 2-dependent mechanism.

    No full text
    OKT3 and UCHT1 monoclonal antibodies, which recognize the same human T cell surface antigen, induce proliferation in T lymphocytes. In this report, we compared the mechanism by which these antibodies trigger DNA synthesis in human peripheral blood mononuclear cell (PBMC) cultures. Whereas PBMC from all donors tested were mitogenically inducible by OKT3, cells from only 25 of 40 donors were responsive to UCHT1 . UCHT1 treatment of PBMC from responders, but not from nonresponders, resulted in the expression by T cells of membrane binding sites reactive with anti-Tac monoclonal antibody, which specifies the human interleukin 2 (IL 2) receptor. UCHT1 -induced PBMC supernatants from nonresponders, but unexpectedly, also from responders, contained no measurable IL 2 activity. In keeping with this finding, anti-Tac monoclonal antibody failed to suppress UCHT1 -triggered [3H]thymidine incorporation into PBMC from responsive donors. By contrast, OKT3 treatment of PBMC from all donors led to the emergence of IL 2 receptors, and substantial IL 2 production, and the resultant DNA synthesis was inhibitable by anti-Tac antibody. These data indicate that the interaction of OKT3 and UCHT1 monoclonal antibodies with the same T cell structure leads to the induction of proliferation via two different mechanisms: one dependent on the availability of IL 2 (OKT3) and one independent on the production and processing of this lymphokine ( UCHT1 ). PBMC unresponsiveness to UCHT1 could therefore not be related to a dysfunction in IL 2 synthesis or IL 2 receptor display
    corecore