113 research outputs found
Dynamic Analysis of Vascular Morphogenesis Using Transgenic Quail Embryos
Background: One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape.
Methodology/Principal Findings: We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally.
Conclusions/Significance: The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development
Skewed Exposure to Environmental Antigens Complements Hygiene Hypothesis in Explaining the Rise of Allergy
The Hygiene Hypothesis has been recognized as an important cornerstone to explain the sudden increase in the prevalence of asthma and allergic diseases in modernized culture. The recent epidemic of allergic diseases is in contrast with the gradual implementation of Homo sapiens sapiens to the present-day forms of civilization. This civilization forms a gradual process with cumulative effects on the human immune system, which co-developed with parasitic and commensal Helminths. The clinical manifestation of this epidemic, however, became only visible in the second half of the twentieth century. In order to explain these clinical effects in terms of the underlying IgE-mediated reactions to innocuous environmental antigens, the low biodiversity of antigens in the domestic environment plays a pivotal role. The skewing of antigen exposure as a cumulative effect of reducing biodiversity in the immediate human environment as well as in changing food habits, provides a sufficient and parsimonious explanation for the rise in allergic diseases in a highly developed and helminth-free modernized culture. Socio-economic tendencies that incline towards a further reduction of environmental biodiversity may provide serious concern for future health. This article explains that the “Hygiene Hypothesis”, the “Old Friends Hypothesis”, and the “Skewed Antigen Exposure Hypothesis” are required to more fully explain the rise of allergy in modern societies
Mechanisms and in vivo functions of contact inhibition of locomotion
Contact inhibition of locomotion (CIL) is a process whereby a cell ceases motility or
changes its trajectory upon collision with another cell. CIL was initially characterized more than
half a century ago and became a widely studied model system to understand how cells migrate
and dynamically interact. Although CIL fell from interest for several decades, the scientific
community has recently rediscovered this process. We are now beginning to understand the
precise steps of this complex behaviour and to elucidate its regulatory components, including
receptors, polarity proteins and cytoskeletal elements. Furthermore, this process is no longer just
in vitro phenomenology; we now know from several different in vivo models that CIL is essential
for embryogenesis and in governing behaviours such as cell dispersion, boundary formation and
collective cell migration. In addition, changes in CIL responses have been associated with other
physiological processes, such as cancer cell dissemination during metastasis
- …