1,040 research outputs found

    Massively parallel computing on an organic molecular layer

    Full text link
    Current computers operate at enormous speeds of ~10^13 bits/s, but their principle of sequential logic operation has remained unchanged since the 1950s. Though our brain is much slower on a per-neuron base (~10^3 firings/s), it is capable of remarkable decision-making based on the collective operations of millions of neurons at a time in ever-evolving neural circuitry. Here we use molecular switches to build an assembly where each molecule communicates-like neurons-with many neighbors simultaneously. The assembly's ability to reconfigure itself spontaneously for a new problem allows us to realize conventional computing constructs like logic gates and Voronoi decompositions, as well as to reproduce two natural phenomena: heat diffusion and the mutation of normal cells to cancer cells. This is a shift from the current static computing paradigm of serial bit-processing to a regime in which a large number of bits are processed in parallel in dynamically changing hardware.Comment: 25 pages, 6 figure

    Transiting extrasolar planetary candidates in the Galactic bulge

    Get PDF
    More than 200 extrasolar planets have been discovered around relatively nearby stars, primarily through the Doppler line shifts owing to the reflex motions of their host stars, and more recently through transits of some planets across the face of the host stars. The detection of planets with the shortest known periods, 1.2 to 2.5 days, has mainly resulted from transit surveys which have generally targeted stars more massive than 0.75 M_sun. Here we report the results from a planetary transit search performed in a rich stellar field towards the Galactic bulge. We discovered 16 candidates with orbital periods between 0.4 and 4.2 days, five of which orbit stars of 0.44 to 0.75 M_sun. In two cases, radial-velocity measurements support the planetary nature of the companions. Five candidates have orbital periods below 1.0 day, constituting a new class of ultra-short-period planets (USPPs), which occur only around stars of less than 0.88 M_sun. This indicates that those orbiting very close to more luminous stars might be evaporatively destroyed, or that jovian planets around lower-mass stars might migrate to smaller radii.Comment: To appear in October 5, 2006 issue of Natur

    Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores

    Get PDF
    © 2018 by The American Society for Biochemistry and Molecular Biology, Inc. Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D- opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D/ mice challenged intranasally with wildtype conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response

    Transitional Care for Young People with Movement Disorders: Consensus-Based Recommendations from the MDS Task Force on Pediatrics

    Get PDF
    Background: The International Parkinson and Movement Disorders Society (MDS) set up a working group on pediatric movement disorders (MDS Task Force on Pediatrics) to generate recommendations to guide the transition process from pediatrics to adult health care systems in patients with childhood-onset movement disorders. / Methods: To develop recommendations for transitional care for childhood onset movement disorders, we used a formal consensus development process, using a multi-round, web-based Delphi survey. The Delphi survey was based on the results of the scoping review of the literature and the results of a survey of MDS members on transition practices. Through iterative discussions, we generated the recommendations included in the survey. The MDS Task Force on Pediatrics were the voting members for the Delphi survey. The task force members comprise 23 child and adult neurologists with expertise in the field of movement disorders and from all regions of the world. / Results: Fifteen recommendations divided across four different areas were made pertaining to: (1) team composition and structure, (2) planning and readiness, (3) goals of care, and (4) administration and research. All recommendations achieved consensus with a median score of 7 or greater. / Conclusion: Recommendations on providing transitional care for patients with childhood onset movement disorders are provided. Nevertheless several challenges remain in the implementation of these recommendations, related to health infrastructure and the distribution of health resources, and the availability of knowledgeable and interested practitioners. Research on the influence of transitional care programs on outcomes in childhood onset movement disorders is much needed

    Detection of hidden structures for arbitrary scales in complex physical systems

    Get PDF
    Recent decades have experienced the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of contending atomic- and largerscale configurations. In order to obtain a more detailed understanding of such systems, we need tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method that applies to both static and dynamic systems which invokes ideas from network analysis and information theory. Our approach efficiently identifies basic unit cells, topological defects, and candidate natural structures. The method is particularly useful where a clear definition of order is lacking, and the identified features may constitute a natural point of departure for further analysis

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    A Protective Role for Complement C3 Protein during Pandemic 2009 H1N1 and H5N1 Influenza A Virus Infection

    Get PDF
    Highly pathogenic H5N1 influenza infections are associated with enhanced inflammatory and cytokine responses, severe lung damage, and an overall dysregulation of innate immunity. C3, a member of the complement system of serum proteins, is a major component of the innate immune and inflammatory responses. However, the role of this protein in the pathogenesis of H5N1 infection is unknown. Here we demonstrate that H5N1 influenza virus infected mice had increased levels of C5a and C3 activation byproducts as compared to mice infected with either seasonal or pandemic 2009 H1N1 influenza viruses. We hypothesized that the increased complement was associated with the enhanced disease associated with the H5N1 infection. However, studies in knockout mice demonstrated that C3 was required for protection from influenza infection, proper viral clearance, and associated with changes in cellular infiltration. These studies suggest that although the levels of complement activation may differ depending on the influenza virus subtype, complement is an important host defense mechanism

    The evolution and appearance of c3 duplications in fish originate an exclusive teleost c3 gene form with anti- inflammatory activity

    Get PDF
    12 páginas, 6 figuras, 3 tablas.-- This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe complement system acts as a first line of defense and promotes organism homeostasis by modulating the fates of diverse physiological processes. Multiple copies of component genes have been previously identified in fish, suggesting a key role for this system in aquatic organisms. Herein, we confirm the presence of three different previously reported complement c3 genes (c3.1, c3.2, c3.3) and identify five additional c3 genes (c3.4, c3.5, c3.6, c3.7, c3.8) in the zebrafish genome. Additionally, we evaluate the mRNA expression levels of the different c3 genes during ontogeny and in different tissues under steady-state and inflammatory conditions. Furthermore, while reconciling the phylogenetic tree with the fish species tree, we uncovered an event of c3 duplication common to all teleost fishes that gave rise to an exclusive c3 paralog (c3.7 and c3.8). These paralogs showed a distinct ability to regulate neutrophil migration in response to injury compared with the other c3 genes and may play a role in maintaining the balance between inflammatory and homeostatic processes in zebrafishThis work has been funded by the project CSD2007-00002 “Aquagenomics” from the Spanish Ministerio de Ciencia e Innovación, the ITN 289209 “FISHFORPHARMA” (EU) and project 201230E057 from the Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC).Peer reviewe
    corecore