11 research outputs found

    Immunological assays for chemokine detection in in-vitro culture of CNS cells

    Get PDF
    Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene array analysis, northern blot analysis, Ribonuclease Protection assay, Flow cytometry, ELISPOT, western blot analysis, and ELISA. No single method of analysis meets the criteria for a comprehensive, biologically relevant assessment of the chemokines, therefore more than one assay might be necessary for correct data interpretation, a choice that is based on development of a scientific rationale for the method with emphasis on the reliability and relevance of the method

    Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies

    Get PDF
    Type 2 diabetes mellitus (T2DM) influences bone metabolism, but the relation of T2DM with bone mineral density (BMD) remains inconsistent across studies. The objective of this study was to perform a meta-analysis and meta-regression of the literature to estimate the difference in BMD (g/cm2) between diabetic and non-diabetic populations, and to investigate potential underlying mechanisms. A literature search was performed in PubMed and Ovid extracting data from articles prior to May 2010. Eligible studies were those where the association between T2DM and BMD measured by dual energy X-ray absorptiometry was evaluated using a cross-sectional, cohort or case–control design, including both healthy controls and subjects with T2DM. The analysis was done on 15 observational studies (3,437 diabetics and 19,139 controls). Meta-analysis showed that BMD in diabetics was significantly higher, with pooled mean differences of 0.04 (95% CI: 0.02, 0.05) at the femoral neck, 0.06 (95% CI: 0.04, 0.08) at the hip and 0.06 (95% CI: 0.04, 0.07) at the spine. The differences for forearm BMD were not significantly different between diabetics and non-diabetics. Sex-stratified analyses showed similar results in both genders. Substantial heterogeneity was found to originate from differences in study design and possibly diabetes definition. Also, by applying meta-regression we could establish that younger age, male gender, higher body mass index and higher HbA1C were positively associated with higher BMD levels in diabetic individuals. We conclude that individuals with T2DM from both genders have higher BMD levels, but that multiple factors influence BMD in individuals with T2DM

    Renin-angiotensin system inhibitors and risk of fractures: a prospective cohort study and meta-analysis of published observational cohort studies

    Get PDF
    The renin-angiotensin system (RAS) represents an important target of antihypertensive medications. Angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB), which are widely-used RAS inhibiting drugs, have been suggested to have beneficial effects on bone tissue. We aimed to assess the associations of use of ACEIs and/or ARBs with the risk of fractures using a population-based prospective cohort and a meta-analysis of published prospective cohort studies. Information on antihypertensive medication use (including both ACEIs and ARBs) were assessed in 1743 men and women of the Kuopio Ischemic Heart Disease prospective cohort study. Hazard ratios (HRs) [95% confidence intervals (CI)] of ACEIs or ARBs use with incident fractures were calculated. A total of 203 composite (hip, humeral, and wrist) fractures occurred during a median follow-up of 14.8 years. In multivariate adjusted analysis, the HR for composite fractures comparing users of ACEIs or ARBs with non-users was 1.00 (0.59–1.69). The corresponding adjusted HR for hip fractures comparing users versus non-users of ACEIs or ARBs was 0.89 (0.32–2.47). Including the current study, a total of 11 observational cohort studies involving 3526,319 participants and &gt;323,355 fractures were included in a meta-analysis. Comparing ACEI users with non-users and ARB users with non-users, the HRs for composite fractures were 1.09 (0.89–1.33) and 0.87 (0.76–1.01) respectively. The corresponding HRs for hip fractures were 0.91 (0.86–0.95) and 0.80 (0.75–0.85) respectively. Use of RAS inhibitors was not associated with long-term risk of composite fractures in both primary and pooled analyses. Pooled evidence however suggests a beneficial effect of RAS blockers on hip fracture risk.</p

    Osteoporosis: the current status of mesenchymal stem cell-based therapy

    Full text link

    Opioid Drug Abuse and Modulation of Immune Function: Consequences in the Susceptibility to Opportunistic Infections

    No full text
    Infection rate among intravenous drug users (IDU) is higher than the general public, and is the major cause of morbidity and hospitalization in the IDU population. Epidemiologic studies provide data on increased prevalence of opportunistic bacterial infections such as TB and pneumonia, and viral infections such as HIV-1 and hepatitis in the IDU population. An important component in the intravenous drug abuse population and in patients receiving medically indicated chronic opioid treatment is opioid withdrawal. Data on bacterial virulence in the context of opioid withdrawal suggest that mice undergoing withdrawal had shortened survival and increased bacterial load in response to Salmonella infection. As the body of evidence in support of opioid dependency and its immunosuppressive effects is growing, it is imperative to understand the mechanisms by which opioids exert these effects and identify the populations at risk that would benefit the most from the interventions to counteract opioid immunosuppressive effects. Thus, it is important to refine the existing animal model to closely match human conditions and to cross-validate these findings through carefully controlled human studies. Better understanding of the mechanisms will facilitate the search for new therapeutic modalities to counteract adverse effects including increased infection rates. This review will summarize the effects of morphine on innate and adaptive immunity, identify the role of the mu opioid receptor in these functions and the signal transduction activated in the process. The role of opioid withdrawal in immunosuppression and the clinical relevance of these findings will also be discussed
    corecore