96 research outputs found
Intercomparison of the northern hemisphere winter mid-latitude atmospheric variability of the IPCC models
We compare, for the overlapping time frame 1962-2000, the estimate of the
northern hemisphere (NH) mid-latitude winter atmospheric variability within the
XX century simulations of 17 global climate models (GCMs) included in the
IPCC-4AR with the NCEP and ECMWF reanalyses. We compute the Hayashi spectra of
the 500hPa geopotential height fields and introduce an integral measure of the
variability observed in the NH on different spectral sub-domains. Only two
high-resolution GCMs have a good agreement with reanalyses. Large biases, in
most cases larger than 20%, are found between the wave climatologies of most
GCMs and the reanalyses, with a relative span of around 50%. The travelling
baroclinic waves are usually overestimated, while the planetary waves are
usually underestimated, in agreement with previous studies performed on global
weather forecasting models. When comparing the results of various versions of
similar GCMs, it is clear that in some cases the vertical resolution of the
atmosphere and, somewhat unexpectedly, of the adopted ocean model seem to be
critical in determining the agreement with the reanalyses. The GCMs ensemble is
biased with respect to the reanalyses but is comparable to the best 5 GCMs.
This study suggests serious caveats with respect to the ability of most of the
presently available GCMs in representing the statistics of the global scale
atmospheric dynamics of the present climate and, a fortiori, in the perspective
of modelling climate change.Comment: 39 pages, 8 figures, 2 table
Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution
Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work
Enhancement of Late Successional Plants on Ex-Arable Land by Soil Inoculations
Restoration of species-rich grasslands on ex-arable land can help the conservation of biodiversity but faces three big challenges: absence of target plant propagules, high residual soil fertility and restoration of soil communities. Seed additions and top soil removal can solve some of these constraints, but restoring beneficial biotic soil conditions remains a challenge. Here we test the hypotheses that inoculation of soil from late secondary succession grasslands in arable receptor soil enhances performance of late successional plants, especially after top soil removal but pending on the added dose. To test this we grew mixtures of late successional plants in arable top (organic) soil or in underlying mineral soil mixed with donor soil in small or large proportions. Donor soils were collected from different grasslands that had been under restoration for 5 to 41 years, or from semi-natural grassland that has not been used intensively. Donor soil addition, especially when collected from older restoration sites, increased plant community biomass without altering its evenness. In contrast, addition of soil from semi-natural grassland promoted plant community evenness, and hence its diversity, but reduced community biomass. Effects of donor soil additions were stronger in mineral than in organic soil and larger with bigger proportions added. The variation in plant community composition was explained best by the abundances of nematodes, ergosterol concentration and soil pH. We show that in controlled conditions inoculation of soil from secondary succession grassland into ex-arable land can strongly promote target plant species, and that the role of soil biota in promoting target plant species is greatest when added after top soil removal. Together our results point out that transplantation of later secondary succession soil can promote grassland restoration on ex-arable land
Early changes in Orthopteran assemblages after grassland restoration : a comparison of space-for-time substitution versus repeated-measures monitoring
Grasslands harbour significant biodiversity and their restoration is a common intervention in biodiversity conservation. However, we know very little on how grassland restoration influences arthropod groups. Here we compared orthopteran assemblages in croplands, natural grasslands and one to four-year-old grasslands restored in a large-scale restoration on former croplands in Hortobágy National Park (E-Hungary). Sampling was done by standardized sweep-netting both in a repeated measures design and space-for-time substitution (chronosequence) design. General linear models with repeated measures from five years showed that species richness, abundance and Shannon diversity of orthopterans decreased in the year following restoration but increased afterwards. By the fourth year, species richness almost doubled and abundance increased almost ten-fold in restored grasslands compared to croplands. Multivariate analyses showed that species composition in the first two years did not progress much but by the third and fourth year there was partial overlap with natural grasslands. Local restoration conditions (last crop, seed mixture) and landscape configuration (proportion of natural grasslands < 1 km away) did not influence the above patterns in either the repeated measures or the chronosequence design, whereas time since restoration affected almost all community variables. Our results suggest that generalist ubiquitous species appeared in restored grasslands first and the more sensitive species colonized the restored fields gradually in later years. The qualitative and quantitative properties of the orthopteran assemblages in restored fields did not yet reach those of natural grasslands, therefore, our study suggests that the full regeneration of the orthopteran assemblages takes more than four years
The 'antisocial' person: an insight in to biology, classification and current evidence on treatment
<p>Abstract</p> <p>Background</p> <p>This review analyses and summarises the recent advances in understanding the neurobiology of violence and empathy, taxonomical issues on defining personality disorders characterised by disregard for social norms, evidence for efficacy of different treatment modalities and ethical implications in defining 'at-risk' individuals for preventive interventions.</p> <p>Methods</p> <p>PubMed was searched with the keywords 'antisocial personality disorder', 'dissocial personality disorder' and 'psychopathy'. The search was limited to articles published in English over the last 10 years (1999 to 2009)</p> <p>Results</p> <p>Both diagnostic manuals used in modern psychiatry, the <it>Diagnostic and Statistical Manual </it>published by the American Psychiatric Association and the <it>International Classification of Diseases </it>published by the World Health Organization, identify a personality disorder sharing similar traits. It is termed antisocial personality disorder in the diagnostic and statistical manual and dissocial personality disorder in the <it>International Classification of Diseases</it>. However, some authors query the ability of the existing manuals to identify a special category termed 'psychopathy', which in their opinion deserves special attention. On treatment-related issues, many psychological and behavioural therapies have shown success rates ranging from 25% to 62% in different cohorts. Multisystemic therapy and cognitive behaviour therapy have been proven efficacious in many trials. There is no substantial evidence for the efficacy of pharmacological therapy. Currently, the emphasis is on early identification and prevention of antisocial behaviour despite the ethical implications of defining at-risk children.</p> <p>Conclusions</p> <p>Further research is needed in the areas of neuroendocrinological associations of violent behaviour, taxonomic existence of psychopathy and efficacy of treatment modalities.</p
Impact of amendments on the physical properties of soil under tropical long-term no till conditions
Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management plays a fundamental role in improving the soil's physical attributes in tropical areas under conservative management and highly affected by compaction caused by intensive farming
Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil
In addition to the well-studied impacts of defecation and defoliation, large herbivores also affect plant and arthropod communities through trampling, and the associated soil compaction. Soil compaction can be expected to be particularly important on wet, fine-textured soils. Therefore, we established a full factorial experiment of defoliation (monthly mowing) and soil compaction (using a rammer, annually) on a clay-rich salt marsh at the Dutch coast, aiming to disentangle the importance of these two factors. Additionally, we compared the effects on soil physical properties, plants, and arthropods to those at a nearby cattle-grazed marsh under dry and under waterlogged conditions. Soil physical conditions of the compacted plots were similar to the conditions at cattle-grazed plots, showing decreased soil aeration and increased waterlogging. Soil salinity was doubled by defoliation and quadrupled by combined defoliation and compaction. Cover of the dominant tall grass Elytrigia atherica was decreased by 80% in the defoliated plots, but cover of halophytes only increased under combined defoliation and compaction. Effects on soil micro-arthropods were most severe under waterlogging, showing a fourfold decrease in abundance and a smaller mean body size under compaction. Although the combined treatment of defoliation and trampling indeed proved most similar to the grazed marsh, large discrepancies remained for both plant and soil fauna communities, presumably because of colonization time lags. We conclude that soil compaction and defoliation differently affect plant and arthropod communities in grazed ecosystems, and that the magnitude of their effects depends on herbivore density, productivity, and soil physical properties
Agent-Based Modeling of Endotoxin-Induced Acute Inflammatory Response in Human Blood Leukocytes
Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions.An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades.The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system
- …