12 research outputs found

    Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence for a latitudinal and altitudinal shift in the distribution range of <it>Ixodes ricinus</it>. The reported incidence of tick-borne disease in humans is on the rise in many European countries and has raised political concern and attracted media attention. It is disputed which factors are responsible for these trends, though many ascribe shifts in distribution range to climate changes. Any possible climate effect would be most easily noticeable close to the tick's geographical distribution limits. In Norway- being the northern limit of this species in Europe- no documentation of changes in range has been published. The objectives of this study were to describe the distribution of <it>I. ricinus </it>in Norway and to evaluate if any range shifts have occurred relative to historical descriptions.</p> <p>Methods</p> <p>Multiple data sources - such as tick-sighting reports from veterinarians, hunters, and the general public - and surveillance of human and animal tick-borne diseases were compared to describe the present distribution of <it>I. ricinus </it>in Norway. Correlation between data sources and visual comparison of maps revealed spatial consistency. In order to identify the main spatial pattern of tick abundance, a principal component analysis (PCA) was used to obtain a weighted mean of four data sources. The weighted mean explained 67% of the variation of the data sources covering Norway's 430 municipalities and was used to depict the present distribution of <it>I. ricinus</it>. To evaluate if any geographical range shift has occurred in recent decades, the present distribution was compared to historical data from 1943 and 1983.</p> <p>Results</p> <p>Tick-borne disease and/or observations of <it>I. ricinus </it>was reported in municipalities up to an altitude of 583 metres above sea level (MASL) and is now present in coastal municipalities north to approximately 69°N.</p> <p>Conclusion</p> <p><it>I. ricinus </it>is currently found further north and at higher altitudes than described in historical records. The approach used in this study, a multi-source analysis, proved useful to assess alterations in tick distribution.</p

    Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ixodes ricinus </it>is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) spirochaetes, the tick-borne encephalitis virus (TBEV) and other pathogens of humans and domesticated mammals. The results of a previous 1994 questionnaire, directed at people living in Central and North Sweden (Svealand and Norrland) and aiming to gather information about tick exposure for humans and domestic animals, suggested that <it>Ixodes ricinus </it>ticks had become more widespread in Central Sweden and the southern part of North Sweden from the early 1980s to the early 1990s. To investigate whether the expansion of the tick's northern geographical range and the increasing abundance of ticks in Sweden were still occurring, in 2009 we performed a follow-up survey 16 years after the initial study.</p> <p>Methods</p> <p>A questionnaire similar to the one used in the 1994 study was published in Swedish magazines aimed at dog owners, home owners, and hunters. The questionnaire was published together with a popular science article about the tick's biology and role as a pathogen vector in Sweden. The magazines were selected to get information from people familiar with ticks and who spend time in areas where ticks might be present.</p> <p>Results</p> <p>Analyses of data from both surveys revealed that during the near 30-year period from the early 1980s to 2008, <it>I. ricinus </it>has expanded its distribution range northwards. In the early 1990s ticks were found in new areas along the northern coastline of the Baltic Sea, while in the 2009 study, ticks were reported for the first time from many locations in North Sweden. This included locations as far north as 66°N and places in the interior part of North Sweden. During this 16-year period the tick's range in Sweden was estimated to have increased by 9.9%. Most of the range expansion occurred in North Sweden (north of 60°N) where the tick's coverage area doubled from 12.5% in the early 1990s to 26.8% in 2008. Moreover, according to the respondents, the abundance of ticks had increased markedly in LB- and TBE-endemic areas in South (Götaland) and Central Sweden.</p> <p>Conclusions</p> <p>The results suggest that <it>I. ricinus </it>has expanded its range in North Sweden and has become distinctly more abundant in Central and South Sweden during the last three decades. However, in the northern mountain region <it>I. ricinus </it>is still absent. The increased abundance of the tick can be explained by two main factors: First, the high availability of large numbers of important tick maintenance hosts, i.e., cervids, particularly roe deer (<it>Capreolus capreolus</it>) during the last three decades. Second, a warmer climate with milder winters and a prolonged growing season that permits greater survival and proliferation over a larger geographical area of both the tick itself and deer. High reproductive potential of roe deer, high tick infestation rate and the tendency of roe deer to disperse great distances may explain the range expansion of <it>I. ricinus </it>and particularly the appearance of new TBEV foci far away from old TBEV-endemic localities. The geographical presence of LB in Sweden corresponds to the distribution of <it>I. ricinus</it>. Thus, LB is now an emerging disease risk in many parts of North Sweden. Unless countermeasures are undertaken to keep the deer populations, particularly <it>C. capreolus </it>and <it>Dama dama</it>, at the relatively low levels that prevailed before the late 1970s - especially in and around urban areas where human population density is high - by e.g. reduced hunting of red fox (<it>Vulpes vulpes</it>) and lynx (<it>Lynx lynx</it>), the incidences of human LB and TBE are expected to continue to be high or even to increase in Sweden in coming decades.</p

    Étude radiolytique de la capture de radicaux peroxyles modèles par un analogue de vitamine E

    No full text
    La vitamine E constitue biologiquement l'ultime barrière de défense contre les phénomènes de peroxydation au sein des membranes lipidiques. Cette action antioxydante est due à la capture de radicaux peroxyles issus des acides gras insaturés. Les différentes étapes d'oxydation monoélectronique ont été étudiées par la méthode de la radiolyse continue, la vitamine E étant en solution éthanolique aérée. De manière analogue, la capture de radicaux peroxyles modèles par une molécule dérivée de la vitamine E a été caractérisée, tant sous l'aspect qualitatif que quantitatif

    A Third Major Locus for Autosomal Dominant Hypercholesterolemia maps at 1p34.1-p32.

    No full text

    Two RNA Worlds: Toward the Origin of Replication, Genes, Recombination, and Repair

    No full text
    corecore