38 research outputs found

    Spatial patterning of the Notch ligand Dll4 controls endothelial sprouting in vitro

    Get PDF
    Angiogenesis, the formation of new blood vessels, is a vital process for tissue growth and development. The Notch cell-cell signalling pathway plays an important role in endothelial cell specification during angiogenesis. Dll4 - Notch1 signalling directs endothelial cells into migrating tip or proliferating stalk cells. We used the directing properties of Dll4 to spatially control endothelial cell fate and the direction of endothelial sprouts. We created linear arrays of immobilized Dll4 using micro contact printing. HUVECs were seeded perpendicular to these Dll4 patterns using removable microfluidic channels. The Notch activating properties of surface immobilized Dll4 were confirmed by qPCR. After induction of sprouting, microscopic images of fluorescently labelled endothelial sprouts were analysed to determine the direction and the efficiency of controlled sprouting (Ecs). Directionality analysis of the sprouts showed the Dll4 pattern changes sprout direction from random to unidirectional. This was confirmed by the increase of Ecs from 54.5 +/- 3.1% for the control, to an average of 84.7 +/- 1.86% on the Dll4 patterned surfaces. Our data demonstrates a surface-based method to spatially pattern Dll4 to gain control over endothelial sprout location and direction. This suggests that spatial ligand patterning can be used to provide control over (neo) vascularization

    Estimated GFR reporting is not sufficient to allow detection of chronic kidney disease in an Italian regional hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) is an emerging worldwide problem. The lack of attention paid to kidney disease is well known and has been described in previous publications. However, little is known about the magnitude of the problem in highly specialized hospitals where serum creatinine values are used to estimate GFR values.</p> <p>Methods</p> <p>We performed a cross-sectional evaluation of hospitalized adult patients who were admitted to the medical or surgical department of Santa Maria della Misericordia Hospital in 2007. Information regarding admissions was derived from a database. Our goal was to assess the prevalence of CKD (defined as an estimated glomerular filtration rate [eGFR] < 60 mL/min/1.73 m<sup>2</sup>) and detection of CKD using diagnostic codes (Classification of Diseases, Ninth Revision, Clinical Modification [ICD-9-CM]). To reduce the impact of acute renal failure on the study, the last eGFR obtained during hospitalization was the value used for analysis, and intensive care and nephrology unit admissions were excluded. We also excluded patients who had ICD-9-CM codes for renal replacement therapy, acute renal failure, and contrast administration listed as discharge diagnoses.</p> <p>Results</p> <p>Of the 18,412 patients included in the study, 4,748 (25.8%) had reduced eGFRs, falling into the category of Kidney Disease Outcomes Quality Initiative (KDOQI) stage 3 (or higher) CKD. However, the diagnosis of CKD was only reported in 19% of these patients (904/4,748). It is therefore evident that there was a "gray area" corresponding to stage 3 CKD (eGFR 30-59 ml/min), in which most CKD diagnoses are missed. The ICD-9 code sensitivity for detecting CKD was significantly higher in patients with diabetes, hypertension, and cardiovascular disease (26.8%, 22.2%, and 23.7%, respectively) than in subjects without diabetes, hypertension, or cardiovascular disease (p < 0.001), but these values are low when the widely described relationship between such comorbidities and CKD is considered.</p> <p>Conclusion</p> <p>Although CKD was common in this patient population at a large inpatient regional hospital, the low rates of CKD detection emphasize the primary role nephrologists must play in continued medical education, and the need for ongoing efforts to train physicians (particularly primary care providers) regarding eGFR interpretation and systematic screening for CKD in high-risk patients (i.e., the elderly, diabetics, hypertensives, and patients with CV disease).</p

    Aprevalent C3 mutation in aHUS patients causes a direct C3 convertase gain offunction

    No full text
    Atypical hemolytic uremic syndrome (aHUS) is a rare renal thrombotic microangiopathy commonly associated with rare genetic variants in complement system genes, unique to each patient/family. Here, we report 14 sporadic aHUS patients carrying the same mutation, R139W, in the complement C3 gene. The clinical presentation was with a rapid progression to end-stage renal disease (6 of 14) and an unusually high frequency of cardiac (8 of 14) and/or neurologic (5 of 14) events. Although resting glomerular endothelial cells (GEnCs) remained unaffected by R139W-C3 sera, the incubation of those sera with GEnC preactivated with proinflammatory stimuli led to increased C3 deposition, C5a release, and procoagulant tissue-factor expression. This functional consequence of R139W-C3 resulted from the formation of a hyperactive C3 convertase. Mutant C3 showed an increased affinity for factor B and a reduced binding to membrane cofactor protein (MCP; CD46), but a normal regulation by factor H (FH). In addition, the frequency of at-risk FH and MCP haplotypes was significantly higher in the R139WaHUS patients, compared with normal donors or to healthy carriers. These genetic background differences could explain the R139W-aHUS incomplete penetrance. These results demonstrate that this C3 mutation, especially when associated with an at-risk FH and/or MCP haplotypes, becomes pathogenic following an inflammatory endothelium-damaging event. © 2012 by The American Society of Hematology.link_to_subscribed_fulltex
    corecore