32,502 research outputs found
Evaluation of salmon and steelhead spawning habitat quality in the South Fork Trinity River Basin, 1997
Sediment sampling was used to evaluate chinook salmon
(Oncorhynchus tshawytscha) and steelhead (O. mykiss) spawning habitat quality in the South Fork Trinity River (SFTR) basin. Sediment samples were collected using a McNeil-type sampler and wet sieved through a series of Tyler screens (25.00 mm, 12.50 mm, 6.30 mm, 3.35 mm, 1.00 mm, and 0.85 mm). Fines (particles < 0.85 mm) were determined after a l0-minute settling period in Imhoff cones. Thirteen stations were sampled in the SFTR basin: five stations were located in mainstem SFTR between rk 2.1 and 118.5, 2 stations each were located in EF of the SFTR, Grouse Creek, and Madden Creek, and one station each was located in Eltapom and Hayfork Creeks. Sample means for fines(particles < 0.85 mm) fer SFTR stations ranged between
14.4 and 19.4%; tributary station sample mean fines ranged between 3.4 and 19.4%. Decreased egg survival would be expected at 4 of 5 mainstem SFTR stations and at one station in EF of SFTR and Grouse Creek where fines content exceed 15%. Small gravel/sand content measured at all stations were high, and exceed levels associated with reduced sac fry emergence rates. Reduction of egg survival or sac fry emergence due to sedimentation in spawning gravels could lead to reduced juvenile production from the South Fork Trinity River.
(PDF contains 18 pages.
Search for the magnetic field of the O7.5 III star xi Persei
Cyclical wind variability is an ubiquitous but as yet unexplained feature
among OB stars. The O7.5 III(n)((f)) star xi Persei is the brightest
representative of this class on the Northern hemisphere. As its prominent
cyclical wind properties vary on a rotational time scale (2 or 4 days) the star
has been already for a long time a serious magnetic candidate. As the cause of
this enigmatic behavior non-radial pulsations and/or a surface magnetic field
are suggested. We present a preliminary report on our attempts to detect a
magnetic field in this star with high-resolution measurements obtained with the
spectropolarimeter Narval at TBL, France during 2 observing runs of 5 nights in
2006 and 5 nights in 2007. Only upper limits could be obtained, even with the
longest possible exposure times. If the star hosts a magnetic field, its
surface strength should be less than about 300 G. This would still be enough to
disturb the stellar wind significantly. From our new data it seems that the
amplitude of the known non-radial pulsations has changed within less than a
year, which needs further investigation.Comment: 2 pages, 6 figures, contributed poster at IAU Symposium 259 "Cosmic
Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain,
November 3-7, 200
Mechanisms associated with activation of intracellular metabotropic glutamate receptor, mGluR5
The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10Â mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5
A Unified Gravity-Electroweak Model Based on a Generalized Yang-Mills Framework
Gravitational and electroweak interactions can be unified in analogy with the
unification in the Weinberg-Salam theory. The Yang-Mills framework is
generalized to include space-time translational group T(4), whose generators
T_{\mu}(=\p/\p x^{\mu}) do not have constant matrix representations. By
gauging in flat space-time, we have a new
tensor field which universally couples to all particles and
anti-particles with the same constant , which has the dimension of length.
In this unified model, the T(4) gauge symmetry dictates that all wave equations
of fermions, massive bosons and the photon in flat space-time reduce to a
Hamilton-Jacobi equation with the same `effective Riemann metric tensor' in the
geometric-optics limit. Consequently, the results are consistent with
experiments. We demonstrated that the T(4) gravitational gauge field can be
quantized in inertial frames.Comment: 12 pages. To be published in "Modern Physics Letters A
Fragility of iron-based glasses
The viscosity of various iron-based bulk-glass-forming liquids is measured around the glass transition, and the associated fragility is calculated. Fragility is found to vary broadly between compositions, from a low value of ~43, which indicates fairly “strong” liquid behavior, to ~65, well within the region of “fragile” behavior. Despite a strong covalent bonding identified in the structure of this class of metal/metalloid glasses, their liquid fragility can be remarkably high, exceeding even the very fragile palladium and platinum bulk-glass formers. An inverse correlation between glass-forming ability and fragility is identified, suggesting that iron-based glasses are effectively “kinetically” stabilized
- …