120,171 research outputs found
A study of the local pressure field in turbulent shear flow and its relation to aerodynamic noise generation Semiannual status report, 1 Aug. 1970 - 31 Jan. 1971
Relation of Eulerian and Lagrangian structure of pseudosound pressure and velocity fields in turbulent shear flow to aerodynamic noise generatio
Numerical determination of the effective moments of non-spherical particles
Dielectric characterisation of polarisable particles, and prediction of the forces and torques exerted upon them, relies on the knowledge of the effective, induced dipole moment. In turn, through the mechanism of depolarisation, the induced dipole moment of a particle is strongly dependent upon its shape. Since realistic shapes create modelling difficulties, the ‘spherical particle’ approximation is often invoked. However, in many cases, including biological dielectric spectroscopy and dielectrophoresis, this assumption is a poor one. For example, human erythrocytes are essentially oblate spheroids with indented sides, while viruses and bacteria often have elongated cigar shapes. Since shape-dependent polarisation both strongly influences the accuracy of conventional dielectric characterisation methods using Maxwell’s mixture formula and confounds accurate prediction of dielectrophoretic forces and torques, it is important to develop means to treat non-spherical particles. In this paper, we demonstrate a means to extract the dipole moment directly from numerical solutions of the induced electrostatic potential when a particle is placed in a uniform electric field. The accuracy of the method is demonstrated for a range of particle shapes: spherical, ellipsoidal, truncated cylinders and an approximation of an erythrocyte, the red blood cell
Single stage experimental evaluation of slotted rotor and stator blading. Part I - Analysis and design
Analysis and design of slotted rotor and stator blading for application to compressors in advanced airbreathing propulsion system
Flux Expulsion - Field Evolution in Neutron Stars
Models for the evolution of magnetic fields of neutron stars are constructed,
assuming the field is embedded in the proton superconducting core of the star.
The rate of expulsion of the magnetic flux out of the core, or equivalently the
velocity of outward motion of flux-carrying proton-vortices is determined from
a solution of the Magnus equation of motion for these vortices. A force due to
the pinning interaction between the proton-vortices and the neutron-superfluid
vortices is also taken into account in addition to the other more conventional
forces acting on the proton-vortices. Alternative models for the field
evolution are considered based on the different possibilities discussed for the
effective values of the various forces. The coupled spin and magnetic evolution
of single pulsars as well as those processed in low-mass binary systems are
computed, for each of the models. The predicted lifetimes of active pulsars,
field strengths of the very old neutron stars, and distribution of the magnetic
fields versus orbital periods in low-mass binary pulsars are used to test the
adopted field decay models. Contrary to the earlier claims, the buoyancy is
argued to be the dominant driving cause of the flux expulsion, for the single
as well as the binary neutron stars. However, the pinning is also found to play
a crucial role which is necessary to account for the observed low field binary
and millisecond pulsars.Comment: 23 pages, + 7 figures, accepted for publication in Ap
Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence
We report on calculations of the translational and rotational short-time
self-diffusion coefficients and for suspensions of
charge-stabilized colloidal spheres. These diffusion coefficients are affected
by electrostatic forces and many-body hydrodynamic interactions (HI). Our
computations account for both two-body and three-body HI. For strongly charged
particles, we predict interesting nonlinear scaling relations and depending on volume fraction
, with essentially charge-independent parameters and . These
scaling relations are strikingly different from the corresponding results for
hard spheres. Our numerical results can be explained using a model of effective
hard spheres. Moreover, we perceptibly improve the known result for of
hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps
- …