8,548 research outputs found

    Energetic Extremes in Aquatic Locomotion by Coral Reef Fishes

    Get PDF
    Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1)) while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting), streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.Funding was provided by the Australian Research Council (to CJF) and the Danish Agency for Science, Technology and Innovation (to JFS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Stochastics theory of log-periodic patterns

    Full text link
    We introduce an analytical model based on birth-death clustering processes to help understanding the empirical log-periodic corrections to power-law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastics theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of cooperative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t_{o} is derived in terms of birth-death clustering coefficients.Comment: LaTeX, 1 ps figure - To appear J. Phys. A: Math & Ge

    Quantum theory of successive projective measurements

    Full text link
    We show that a quantum state may be represented as the sum of a joint probability and a complex quantum modification term. The joint probability and the modification term can both be observed in successive projective measurements. The complex modification term is a measure of measurement disturbance. A selective phase rotation is needed to obtain the imaginary part. This leads to a complex quasiprobability, the Kirkwood distribution. We show that the Kirkwood distribution contains full information about the state if the two observables are maximal and complementary. The Kirkwood distribution gives a new picture of state reduction. In a nonselective measurement, the modification term vanishes. A selective measurement leads to a quantum state as a nonnegative conditional probability. We demonstrate the special significance of the Schwinger basis.Comment: 6 page

    Weak Measurements with Arbitrary Pointer States

    Full text link
    The exact conditions on valid pointer states for weak measurements are derived. It is demonstrated that weak measurements can be performed with any pointer state with vanishing probability current density. This condition is found both for weak measurements of noncommuting observables and for cc-number observables. In addition, the interaction between pointer and object must be sufficiently weak. There is no restriction on the purity of the pointer state. For example, a thermal pointer state is fully valid.Comment: 4 page

    The fate of planetesimals formed at planetary gap edges

    Full text link
    The presence of rings and gaps in protoplanetary discs are often ascribed to planet-disc interactions, where dust and pebbles are trapped at the edges of planetary induced gas gaps. Recent work has shown that these are likely sites for planetesimal formation via the streaming instability. Given the large amount of planetesimals that potentially form at gap edges, we address the question of their fate and ability to radially transport solids in protoplanetary discs. We perform a series of N-body simulations of planetesimal orbits, taking into account the effect of gas drag and mass loss via ablation. We consider two planetary systems: one akin to the young Solar System, and another one inspired by HL Tau. In both systems, the close proximity to the gap-opening planets results in large orbital excitations, causing the planetesimals to leave their birth locations and spread out across the disc soon after formation. Planetesimals that end up on eccentric orbits interior of 10au experience efficient ablation, and lose all mass before they reach the innermost disc region. In our nominal Solar System simulation with M˙0=107Myr1\dot{M}_0=10^{-7}\, M_{\odot}\, \textrm{yr}^{-1} and α=102\alpha=10^{-2}, we find that 70% of the initial planetesimal mass has been ablated after 500kyr. The ablation rate in HL Tau is lower, and only 11% of the initial planetesimal mass has been ablated after 1Myr. The ablated material consist of a mixture of solid grains and vaporized ices, where a large fraction of the vaporized ices re-condense to form solid ice. Assuming that the solids grow to pebbles in the disc midplane, this results in a pebble flux of 10100MMyr1\sim 10-100\,M_{\oplus}\textrm{Myr}^{-1} through the inner disc. Our results demonstrate that scattered planetesimals can carry a significant flux of solids past planetary-induced gaps in young and massive protoplanetary discs.Comment: Accepted for publication in A&

    Log-periodic route to fractal functions

    Full text link
    Log-periodic oscillations have been found to decorate the usual power law behavior found to describe the approach to a critical point, when the continuous scale-invariance symmetry is partially broken into a discrete-scale invariance (DSI) symmetry. We classify the `Weierstrass-type'' solutions of the renormalization group equation F(x)= g(x)+(1/m)F(g x) into two classes characterized by the amplitudes A(n) of the power law series expansion. These two classes are separated by a novel ``critical'' point. Growth processes (DLA), rupture, earthquake and financial crashes seem to be characterized by oscillatory or bounded regular microscopic functions g(x) that lead to a slow power law decay of A(n), giving strong log-periodic amplitudes. In contrast, the regular function g(x) of statistical physics models with ``ferromagnetic''-type interactions at equibrium involves unbound logarithms of polynomials of the control variable that lead to a fast exponential decay of A(n) giving weak log-periodic amplitudes and smoothed observables. These two classes of behavior can be traced back to the existence or abscence of ``antiferromagnetic'' or ``dipolar''-type interactions which, when present, make the Green functions non-monotonous oscillatory and favor spatial modulated patterns.Comment: Latex document of 29 pages + 20 ps figures, addition of a new demonstration of the source of strong log-periodicity and of a justification of the general offered classification, update of reference lis

    Nonclassicality in Weak Measurements

    Get PDF
    We examine weak measurements of arbitrary observables where the object is prepared in a mixed state and on which measurements with imperfect detectors are made. The weak value of an observable can be expressed as a conditional expectation value over an infinite class of different generalized Kirkwood quasi-probability distributions. "Strange" weak values for which the real part exceeds the eigenvalue spectrum of the observable can only be found if the Terletsky-Margenau-Hill distribution is negative, or, equivalently, if the real part of the weak value of the density operator is negative. We find that a classical model of a weak measurement exists whenever the Terletsky-Margenau-Hill representation of the observable equals the classical representation of the observable and the Terletsky-Margenau-Hill distribution is nonnegative. Strange weak values alone are not sufficient to obtain a contradiction with classical models. We propose feasible weak measurements of photon number of the radiation field. Negative weak values of energy contradicts all classical stochastic models, whereas negative weak values of photon number contradict all classical stochastic models where the energy is bounded from below by the zero-point energy. We examine coherent states in particular, and find negative weak values with probabilities of 16% for kinetic energy (or squared field quadrature), 8% for harmonic oscillator energy and 50% for photon number. These experiments are robust against detector inefficiency and thermal noise.Comment: 12 pages, 8 figure

    Manado Convention and Exhibition Center. Neo Vernacular Architecture

    Full text link
    Manado Convention Exhibition Center merupakan sebuah convention dan exhibition center yang dilengkapi dengan fasilitas bagi publik yaitu sebuah tempat pemusatan pewadahan pelayanan kegiatan konvensi dan eksebisi. Dimana aktivitas sasaran khususnya peserta juga dimungkinkan dapat menikmati pameran promosi serta paket wisata yang dikemas dalam produk wisata konvensi atau disebut dengan wisata MICE (Meeting Incentive Travel Convention and Exhibition). Dunia MICE adalah dunia yang belum terjamah dengan baik di Indonesia. Padahal dunia MICE merupakan salah satu andalan pariwisata di beberapa negara maju. MICE merupakan salah satu invenstasi bisnis yang menjanjikan. Berkaitan dengan objek bangunan yang akan dirancang, penulis merencanakan penggunaan langgam arsitektur Neo-Vernacular, yaitu penghidupan kembali elemen tradisional yang memuat bentuk dan bangunan lokal di kolaborasikan dengan arsitektur modern. Aliran Neo-Vernacularism ini menampilkan ciri khas gaya tradisional yang di kembangkan bersamaan dengan arsitektur masa modern. Neo-Vernacularism akan menyuguhkan bangunan tradisional yang sudah berevolusi sesuai dengan perkembangan zaman di era globalisasi ini, dimana penggabungan atas keduanya di terapkan dalam prinsip double coding
    corecore