7 research outputs found

    Insight into the Mechanisms of Adenovirus Capsid Disassembly from Studies of Defensin Neutralization

    Get PDF
    Defensins are effectors of the innate immune response with potent antibacterial activity. Their role in antiviral immunity, particularly for non-enveloped viruses, is poorly understood. We recently found that human alpha-defensins inhibit human adenovirus (HAdV) by preventing virus uncoating and release of the endosomalytic protein VI during cell entry. Consequently, AdV remains trapped in the endosomal/lysosomal pathway rather than trafficking to the nucleus. To gain insight into the mechanism of defensin-mediated neutralization, we analyzed the specificity of the AdV-defensin interaction. Sensitivity to alpha-defensin neutralization is a common feature of HAdV species A, B1, B2, C, and E, whereas species D and F are resistant. Thousands of defensin molecules bind with low micromolar affinity to a sensitive serotype, but only a low level of binding is observed to resistant serotypes. Neutralization is dependent upon a correctly folded defensin molecule, suggesting that specific molecular interactions occur with the virion. CryoEM structural studies and protein sequence analysis led to a hypothesis that neutralization determinants are located in a region spanning the fiber and penton base proteins. This model was supported by infectivity studies using virus chimeras comprised of capsid proteins from sensitive and resistant serotypes. These findings suggest a mechanism in which defensin binding to critical sites on the AdV capsid prevents vertex removal and thereby blocks subsequent steps in uncoating that are required for release of protein VI and endosomalysis during infection. In addition to informing the mechanism of defensin-mediated neutralization of a non-enveloped virus, these studies provide insight into the mechanism of AdV uncoating and suggest new strategies to disrupt this process and inhibit infection

    Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice

    No full text
    Aging is the single most common risk factor for cancer. Peripheral and marrow-derived stem cells are long lived and are candidate cells for the cancer-initiating cell. Repeated rounds of replication are likely required for accumulation of the necessary genetic mutations. Based on the facts that mesenchymal stem cells (MSC) transform with higher frequency than other cell types, and tumors in aged C57BL/6 mice are frequently fibrosarcomas, we used a genetically tagged bone marrow (BM) transplant model to show that aged mice develop MSC-derived fibrosarcomas. We further show that, with aging, MSCs spontaneously transform in culture and, when placed into our mouse model, recapitulated the naturally occurring fibrosarcomas of the aged mice with gene expression changes and p53 mutation similar to the in vivo model. Spontaneously transformed MSCs contribute directly to the tumor, tumor vasculature, and tumor adipose tissue, recruit additional host BM-derived cells (BMDC) to the area, and fuse with the host BMDC. Unfused transformed MSCs act as the cancer stem cell and are able to form tumors in successive mice, whereas fusion restores a nonmalignant phenotype. These data suggest that MSCs may play a key role in age-related tumors, and fusion with host cells restores a nonmalignant phenotype, thereby providing a mechanism for regulating tumor cell activity

    Increased pelvic incidence may lead to arthritis and sagittal orientation of the facet joints at the lower lumbar spine

    Get PDF
    BACKGROUND: Correct sagittal alignment with a balanced pelvis and spine is crucial in the management of spinal disorders. The pelvic incidence (PI) describes the sagittal pelvic alignment and is position-independent. It has barely been investigated on CT scans. Furthermore, no studies have focused on the association between PI and facet joint (FJ) arthritis and orientation. Therefore, our goal was to clarify the remaining issues about PI in regard to (1) physiologic values, (2) age, (3) gender, (4) lumbar lordosis (LL) and (5) FJ arthritis and orientation using CT scans. METHODS: We retrospectively analyzed CT scans of 620 individuals, with a mean age of 43 years, who presented to our traumatology department and underwent a whole body CT scan, between 2008 and 2010. The PI was determined on sagittal CT planes of the pelvis by measuring the angle between the hip axis to an orthogonal line originating at the center of the superior end plate axis of the first sacral vertebra. We also evaluated LL, FJ arthritis and orientation of the lumbar spine. RESULTS: 596 individuals yielded results for (1) PI with a mean of 50.8[degree sign]. There was no significant difference for PI and (2) age, nor (3) gender. PI was significantly and linearly correlated with (4) LL (p = < 0.0001). Interestingly, PI and (5) FJ arthritis displayed a significant and linear correlation (p = 0.0062) with a cut-off point at 50[degree sign]. An increased PI was also significantly associated with more sagitally oriented FJs at L5/S1 (p = 0.01). CONCLUSION: PI is not correlated with age nor gender. However, this is the first report showing that PI is significantly and linearly associated with LL, FJ arthritis and more sagittal FJ orientation at the lower lumbar spine. This may be caused by a higher contact force on the lower lumbar FJs by an increased PI. Once symptomatic or in the event of spinal trauma, patients with increased PI and LL could benefit from corrective surgery and spondylodesis
    corecore