1,766 research outputs found
The prevention and management of hospital admissions for urinary tract infection in patients with multiple sclerosis
Introduction
Urinary tract infections (UTIs) are one of the commonest reasons for patients with multiple sclerosis (PwMS) presenting to hospital. Management of recurrent UTIs in PwMS can be challenging and characteristics of such patients are not well described.
Aims
To describe the neurological and urological features of PwMS presenting to hospital for UTIs and identify areas of management that could be improved to reduce UTI frequency.
Methods
Health episode statistics data were used to identify PwMS presenting to a tertiary hospital with UTI over a 5-year period. Medical records were reviewed for demographic, MS and urological history. The seven PwMS with the highest numbers of encounters were seen in a multidisciplinary clinic to enable detailed assessments.
Results
52 PwMS (25 female, 27 male) with mean age of 60 had 112 emergency department presentations and 102 inpatient admissions for UTI. 24 presented multiple times and were more likely to be older and male with progressive MS. Almost two-thirds were using a urinary catheter. Less than half were under current urological and neurological follow-up. Escherichia coli and Pseudomonas spp were the commonest organisms cultured. Resistance to antibiotics was more frequent in patients with multiple presentations.
Conclusions
PwMS presenting to hospital for UTIs are more often male, older, with progressive MS and high levels of disability. A small group of PwMS accounted for a large number of encounters. Preventative and management strategies can be applied in primary and secondary care settings, with an emphasis on bladder, catheter and general physical care
Types of Stem Cells in Regenerative Medicine: A Review
Two basic and clinical researches accomplished during the recent years on embryonic and adult stem cells constituted a mutation in regenerative therapy. These cells can be used for treating some degenerative diseases. Between them, age-related functional defects, hematopoietic and immune system disorders, heart failures, chronic liver injuries, diabetes, Parkinson’s and Alzheimer’s diseases, arthritis and muscular, skin, lung, eye, and digestive disorders, aggressive and regressive cancers can be treated by cell therapies. This review focused on types of stem cells used in regenerative medicine
Evaluation of Silver Nanoparticle Toxicity in Skin in Vivo and Keratinocytes in Vitro
IntroductionProducts using the antimicrobial properties of silver nanoparticles (Ag-nps) may be found in health and consumer products that routinely contact skin.ObjectivesThis study was designed to assess the potential cytotoxicity of Ag-nps in human epidermal keratinocytes (HEKs) and their inflammatory and penetrating potential into porcine skin in vivo.Materials and MethodsWe used eight different Ag-nps in this study [unwashed/uncoated (20, 50, and 80 nm particle diameter), washed/uncoated (20, 50, and 80 nm), and carbon-coated (25 and 35 nm)]. Skin was dosed topically for 14 consecutive days. HEK viability was assessed by MTT, alamarBlue (aB), and CellTiter 96 AQueous One (96AQ). Release of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8, IL-10, and tumor necrosis factor-α (TNF-α) were measured.ResultsThe effect of the unwashed Ag-nps on HEK viability after a 24-hr exposure indicated a significant dose-dependent decrease (p < 0.05) at 0.34 μg/mL with aB and 96AQ and at 1.7 μg/mL with MTT. However, both the washed Ag-nps and carbon-coated Ag-nps showed no significant decrease in viability at any concentration assessed by any of the three assays. For each of the unwashed Ag-nps, we noted a significant increase (p < 0.05) in IL-1β, IL-6, IL-8, and TNF-α concentrations. We observed localization of all Ag-nps in cytoplasmic vacuoles of HEKs. Macroscopic observations showed no gross irritation in porcine skin, whereas microscopic and ultrastructural observations showed areas of focal inflammation and localization of Ag-nps on the surface and in the upper stratum corneum layers of the skin.ConclusionThis study provides a better understanding Ag-nps safety in vitro as well as in vivo and a basis for occupational and risk assessment. Ag-nps are nontoxic when dosed in washed Ag-nps solutions or carbon coated
Transcriptomic profiling reveals a pronociceptive role for angiotensin II in inflammatory bowel disease.
Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies. Potential pronociceptive mediators were identified based on gene upregulation in IBD biopsy tissue and cognate receptor expression in murine colonic sensory neurons. Pronociceptive activity of identified mediators was assessed in assays of sensory neuron and colonic afferent activity. RNA sequencing analysis highlighted a 7.6-fold increase in the expression of angiotensinogen transcripts, Agt , which encode the precursor to angiotensin II (Ang II), in samples from UC patients ( P = 3.2 × 10 -8 ). Consistent with the marked expression of the angiotensin AT 1 receptor in colonic sensory neurons, Ang II elicited an increase in intracellular Ca 2+ in capsaicin-sensitive, voltage-gated sodium channel subtype Na V 1.8-positive sensory neurons. Ang II also evoked action potential discharge in high-threshold colonic nociceptors. These effects were inhibited by the AT 1 receptor antagonist valsartan. Findings from our study identify AT 1 receptor-mediated colonic nociceptor activation as a novel pathway of visceral nociception in patients with UC. This work highlights the potential utility of angiotensin receptor blockers, such as valsartan, as treatments for pain in IBD
Rib head protrusion into the central canal in type 1 neurofibromatosis
Intraspinal rib head dislocation is an important but under-recognized consequence of dystrophic scoliosis in patients with neurofibromatosis 1 (NF1).
To present clinical and imaging findings of intraspinal rib head dislocation in NF1.
We retrospectively reviewed clinical presentation, imaging, operative reports and post-operative courses in four NF1 patients with intraspinal rib head dislocation and dystrophic scoliosis. We also reviewed 17 cases from the English literature.
In each of our four cases of intraspinal rib head dislocation, a single rib head was dislocated on the convex apex of the curve, most often in the mid- to lower thoracic region. Cord compression occurred in half of these patients. Analysis of the literature yielded similar findings. Only three cases in the literature demonstrates the MRI appearance of this entity; most employ CT. All of our cases include both MRI and CT; we review the subtle findings on MRI.
Although intraspinal rib head dislocation is readily apparent on CT, sometimes MRI is the only cross-sectional imaging performed. It is essential that radiologists become familiar with this entity, as subtle findings have significant implications for surgical management
Combined ATR and DNA-PK Inhibition Radiosensitizes Tumor Cells Independently of Their p53 Status.
Head and neck squamous cell carcinoma (HNSCC) is a significant cause of cancer deaths. Cisplatin-based chemoradiotherapy is a standard of care for locally advanced disease. ATR and DNA-PK inhibition (DNA-PKi) are actively being investigated in clinical trials with preclinical data supporting clinical translation as radiosensitizers. Here, we hypothesized that targeting both ATR and DNA-PK with small molecule inhibitors would increase radiosensitization of HNSCC cell lines. Radiosensitization was assessed by Bliss independence analysis of colony survival data. Strong cell cycle perturbing effects were observed with ATR inhibition reversing the G2/M arrest observed for radiation-DNA-PKi. Increased apoptosis in combination groups was measured by Sub-G1 DNA populations. DNA-PKi increased radiation-induced RAD51 and gamma-H2Ax foci, with the addition of ATR inhibition reducing levels of both. A sharp increase in nuclear fragmentation after aberrant mitotic transit appears to be the main driver of decreased survival due to irradiation and dual ATR/DNA-PKi. Dual inhibition of DNA-PK and ATR represents a novel approach in combination with radiation, with efficacy appearing to be independent of p53 status. Due to toxicity concerns, careful assessment is necessary in any future translation of single or dual radiosensitization approaches. Ongoing clinical trials into the ATR inhibitor AZD6738 plus radiation, and the phenotypically similar combination of AZD6738 and the PARP inhibitor olaparib, are likely to be key in ascertaining the toxicity profile of such combinations
The Rossiter-McLaughlin effect in Exoplanet Research
The Rossiter-McLaughlin effect occurs during a planet's transit. It provides
the main means of measuring the sky-projected spin-orbit angle between a
planet's orbital plane, and its host star's equatorial plane. Observing the
Rossiter-McLaughlin effect is now a near routine procedure. It is an important
element in the orbital characterisation of transiting exoplanets. Measurements
of the spin-orbit angle have revealed a surprising diversity, far from the
placid, Kantian and Laplacian ideals, whereby planets form, and remain, on
orbital planes coincident with their star's equator. This chapter will review a
short history of the Rossiter-McLaughlin effect, how it is modelled, and will
summarise the current state of the field before describing other uses for a
spectroscopic transit, and alternative methods of measuring the spin-orbit
angle.Comment: Review to appear as a chapter in the "Handbook of Exoplanets", ed. H.
Deeg & J.A. Belmont
Author Correction: Enhanced NF-κB signaling in type-2 dendritic cells at baseline predicts non-response to adalimumab in psoriasis.
Funder: Department of HealthBiologic therapies have transformed the management of psoriasis, but clinical outcome is variable leaving an unmet clinical need for predictive biomarkers of response. Here we perform in-depth immunomonitoring of blood immune cells of 67 patients with psoriasis, before and during therapy with the anti-TNF drug adalimumab, to identify immune mediators of clinical response and evaluate their predictive value. Enhanced NF-κBp65 phosphorylation, induced by TNF and LPS in type-2 dendritic cells (DC) before therapy, significantly correlates with lack of clinical response after 12 weeks of treatment. The heightened NF-κB activation is linked to increased DC maturation in vitro and frequency of IL-17+ T cells in the blood of non-responders before therapy. Moreover, lesional skin of non-responders contains higher numbers of dermal DC expressing the maturation marker CD83 and producing IL-23, and increased numbers of IL-17+ T cells. Finally, we identify and clinically validate LPS-induced NF-κBp65 phosphorylation before therapy as a predictive biomarker of non-response to adalimumab, with 100% sensitivity and 90.1% specificity in an independent cohort. Our study uncovers important molecular and cellular mediators underpinning adalimumab mechanisms of action in psoriasis and we propose a blood biomarker for predicting clinical outcome
Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data
Determining the functional structure of biological networks is a central goal
of systems biology. One approach is to analyze gene expression data to infer a
network of gene interactions on the basis of their correlated responses to
environmental and genetic perturbations. The inferred network can then be
analyzed to identify functional communities. However, commonly used algorithms
can yield unreliable results due to experimental noise, algorithmic
stochasticity, and the influence of arbitrarily chosen parameter values.
Furthermore, the results obtained typically provide only a simplistic view of
the network partitioned into disjoint communities and provide no information of
the relationship between communities. Here, we present methods to robustly
detect coregulated and functionally enriched gene communities and demonstrate
their application and validity for Escherichia coli gene expression data.
Applying a recently developed community detection algorithm to the network of
interactions identified with the context likelihood of relatedness (CLR)
method, we show that a hierarchy of network communities can be identified.
These communities significantly enrich for gene ontology (GO) terms, consistent
with them representing biologically meaningful groups. Further, analysis of the
most significantly enriched communities identified several candidate new
regulatory interactions. The robustness of our methods is demonstrated by
showing that a core set of functional communities is reliably found when
artificial noise, modeling experimental noise, is added to the data. We find
that noise mainly acts conservatively, increasing the relatedness required for
a network link to be reliably assigned and decreasing the size of the core
communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1
was not uploaded but is available by contacting the author. 27 pages, 5
figures, 15 supplementary file
- …