15 research outputs found
Implied volatility of basket options at extreme strikes
In the paper, we characterize the asymptotic behavior of the implied
volatility of a basket call option at large and small strikes in a variety of
settings with increasing generality. First, we obtain an asymptotic formula
with an error bound for the left wing of the implied volatility, under the
assumption that the dynamics of asset prices are described by the
multidimensional Black-Scholes model. Next, we find the leading term of
asymptotics of the implied volatility in the case where the asset prices follow
the multidimensional Black-Scholes model with time change by an independent
increasing stochastic process. Finally, we deal with a general situation in
which the dependence between the assets is described by a given copula
function. In this setting, we obtain a model-free tail-wing formula that links
the implied volatility to a special characteristic of the copula called the
weak lower tail dependence function
Constructing self-similar martingales via two Skorokhod embeddings
With the help of two Skorokhod embeddings, we construct martingales which enjoy the Brownian scaling property and the (inhomogeneous) Markov property. The second method necessitates randomization, but allows to reach any law with finite moment of order 1, centered, as the distribution of such a martingale at unit time. The first method does not necessitate randomization, but an additional restriction on the distribution at unit time is needed. Key words: Skorokhod embeddings, Hardy-Littlewood functions, convex order, Schauder fixed point theorem, self-similar martingales, Karamata’s representation theorem
Exact tail asymptotics of the supremum of strongly dependent gaussian processes over a random interval
Let be a positive random variable independent of a real-valued stochastic process . In this paper, we investigate the asymptotic behavior of as u -> a assuming that X is a strongly dependent stationary Gaussian process and has a regularly varying survival function at infinity with index lambda a [0, 1). Under asymptotic restrictions on the correlation function of the process, we show that with some positive finite constant c and function m(center dot) defined in terms of the local behavior of the correlation function and the standard Gaussian distribution
