19 research outputs found

    Association between the Perioperative Antioxidative Ability of Platelets and Early Post-Transplant Function of Kidney Allografts: A Pilot Study

    Get PDF
    BACKGROUND: Recent studies have demonstrated that the actions of platelets may unfavorably influence post-transplant function of organ allografts. In this study, the association between post-transplant graft function and the perioperative activity of platelet antioxidants was examined among kidney recipients divided into early (EGF), slow (SGF), and delayed graft function (DGF) groups. METHODOLOGY/PRINCIPAL FINDINGS: Activities of superoxide dismutase, catalase, glutathione transferase (GST), glutathione peroxidase, and glucose-6-phosphate dehydrogenase (G6P) were determined and levels of glutathione, oxidized glutathione, and isoprostane were measured in blood samples collected immediately before and during the first and fifth minutes of renal allograft reperfusion. Our results demonstrated a significant increase in isoprostane levels in all groups. Interestingly, in DGF patients, significantly lower levels of perioperative activity of catalase (p<0.02) and GST (p<0.02) were observed. Moreover, in our study, the activity of platelet antioxidants was associated with intensity of perioperative oxidative stress. For discriminating SGF/DGF from EGF, sensitivity, specificity, and positive and negative predictive values of platelet antioxidants were 81-91%, 50-58%, 32-37%, and 90-90.5%, respectively. CONCLUSIONS: During renal transplantation, significant changes occur in the activity of platelet antioxidants. These changes seem to be associated with post-transplant graft function and can be potentially used to differentiate between EGF and SGF/DGF. To the best of our knowledge, this is the first study to reveal the potential protective role of platelets in the human transplantation setting

    Interleukin-15 promotes intestinal dysbiosis with butyrate deficiency associated with increased susceptibility to colitis

    Get PDF
    Dysbiosis resulting in gut-microbiome alterations with reduced butyrate production are thought to disrupt intestinal immune homeostasis and promote complex immune disorders. However, whether and how dysbiosis develops before the onset of overt pathology remains poorly defined. Interleukin-15 (IL-15) is upregulated in distressed tissue and its overexpression is thought to predispose susceptible individuals to and have a role in the pathogenesis of celiac disease and inflammatory bowel disease (IBD). Although the immunological roles of IL-15 have been largely studied, its potential impact on the microbiota remains unexplored. Analysis of 16S ribosomal RNA-based inventories of bacterial communities in mice overexpressing IL-15 in the intestinal epithelium (villin-IL-15 transgenic (v-IL-15tg) mice) shows distinct changes in the composition of the intestinal bacteria. Although some alterations are specific to individual intestinal compartments, others are found across the ileum, cecum and feces. In particular, IL-15 overexpression restructures the composition of the microbiota with a decrease in butyrate-producing bacteria that is associated with a reduction in luminal butyrate levels across all intestinal compartments. Fecal microbiota transplant experiments of wild-type and v-IL-15tg microbiota into germ-free mice further indicate that diminishing butyrate concentration observed in the intestinal lumen of v-IL-15tg mice is the result of intrinsic alterations in the microbiota induced by IL-15. This reconfiguration of the microbiota is associated with increased susceptibility to dextran sodium sulfate-induced colitis. Altogether, this study reveals that IL-15 impacts butyrate-producing bacteria and lowers butyrate levels in the absence of overt pathology, which represent events that precede and promote intestinal inflammatory diseases

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Significance Communicating in ways that motivate engagement in social distancing remains a critical global public health priority during the COVID-19 pandemic. This study tested motivational qualities of messages about social distancing (those that promoted choice and agency vs. those that were forceful and shaming) in 25,718 people in 89 countries. The autonomy-supportive message decreased feelings of defying social distancing recommendations relative to the controlling message, and the controlling message increased controlled motivation, a less effective form of motivation, relative to no message. Message type did not impact intentions to socially distance, but people’s existing motivations were related to intentions. Findings were generalizable across a geographically diverse sample and may inform public health communication strategies in this and future global health emergencies. Abstract Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Role of Focal Adhesion Tyrosine Kinases in GPVI-Dependent Platelet Activation and Reactive Oxygen Species Formation

    Full text link
    BackgroundWe have previously shown the presence of a TRAF4/p47phox/Hic5/Pyk2 complex associated with the platelet collagen receptor, GPVI, consistent with a potential role of this complex in GPVI-dependent ROS formation. In other cell systems, NOX-dependent ROS formation is facilitated by Pyk2, which along with its closely related homologue FAK are known to be activated and phosphorylated downstream of ligand binding to GPVI.AimsTo evaluate the relative roles of Pyk2 and FAK in GPVI-dependent ROS formation and to determine their location within the GPVI signaling pathway.Methods and ResultsHuman and mouse washed platelets (from WT or Pyk2 KO mice) were pre-treated with pharmacological inhibitors targeting FAK or Pyk2 (PF-228 and Tyrphostin A9, respectively) and stimulated with the GPVI-specific agonist, CRP. FAK, but not Pyk2, was found to be essential for GPVI-dependent ROS production and aggregation. Subsequent human platelet studies with PF-228 confirmed FAK is essential for GPVI-mediated phosphatidylserine exposure, a-granule secretion (P-selectin (CD62P) surface expression) and integrin aIIbß3 activation. To determine the precise location of FAK within the GPVI pathway, we analyzed the effect of PF-228 inhibition in CRP-stimulated platelets in conjunction with immunoprecipitation and pulldown analysis to show that FAK is downstream of Lyn, Spleen tyrosine kinase (Syk), PI3-K and Bruton's tyrosine kinase (Btk) and upstream of Rac1, PLC?2, Ca2+ release, PKC, Hic-5, NOX1 and aIIbß3 activation.ConclusionOverall, these data suggest a novel role for FAK in GPVI-dependent ROS formation and platelet activation and elucidate a proximal signaling role for FAK within the GPVI pathway
    corecore