188 research outputs found

    The effect of arm training on thermoregulatory responses and calf volume during upper body exercise

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s00421-014-2842-9.PURPOSE: The smaller muscle mass of the upper body compared to the lower body may elicit a smaller thermoregulatory stimulus during exercise and thus produce novel training-induced thermoregulatory adaptations. Therefore, the principal aim of the study was to examine the effect of arm training on thermoregulatory responses during submaximal exercise. METHODS: Thirteen healthy male participants (Mean ± SD age 27.8 ± 5.0 years, body mass 74.8 ± 9.5 kg) took part in 8 weeks of arm crank ergometry training. Thermoregulatory and calf blood flow responses were measured during 30 min of arm cranking at 60% peak power (W peak) pre-, and post-training and post-training at the same absolute intensity as pre-training. Core temperature and skin temperatures were measured, along with heat flow at the calf, thigh, upper arm and chest. Calf blood flow using venous occlusion plethysmography was performed pre- and post-exercise and calf volume was determined during exercise. RESULTS: The upper body training reduced aural temperature (0.1 ± 0.3 °C) and heat storage (0.3 ± 0.2 J g(-1)) at a given power output as a result of increased whole body sweating and heat flow. Arm crank training produced a smaller change in calf volume post-training at the same absolute exercise intensity (-1.2 ± 0.8% compared to -2.2 ± 0.9% pre-training; P < 0.05) suggesting reduced leg vasoconstriction. CONCLUSION: Training improved the main markers of aerobic fitness. However, the results of this study suggest arm crank training additionally elicits physiological responses specific to the lower body which may aid thermoregulation.Peer reviewedFinal Accepted Versio

    On renormalization group flows and the a-theorem in 6d

    Full text link
    We study the extension of the approach to the a-theorem of Komargodski and Schwimmer to quantum field theories in d=6 spacetime dimensions. The dilaton effective action is obtained up to 6th order in derivatives. The anomaly flow a_UV - a_IR is the coefficient of the 6-derivative Euler anomaly term in this action. It then appears at order p^6 in the low energy limit of n-point scattering amplitudes of the dilaton for n > 3. The detailed structure with the correct anomaly coefficient is confirmed by direct calculation in two examples: (i) the case of explicitly broken conformal symmetry is illustrated by the free massive scalar field, and (ii) the case of spontaneously broken conformal symmetry is demonstrated by the (2,0) theory on the Coulomb branch. In the latter example, the dilaton is a dynamical field so 4-derivative terms in the action also affect n-point amplitudes at order p^6. The calculation in the (2,0) theory is done by analyzing an M5-brane probe in AdS_7 x S^4. Given the confirmation in two distinct models, we attempt to use dispersion relations to prove that the anomaly flow is positive in general. Unfortunately the 4-point matrix element of the Euler anomaly is proportional to stu and vanishes for forward scattering. Thus the optical theorem cannot be applied to show positivity. Instead the anomaly flow is given by a dispersion sum rule in which the integrand does not have definite sign. It may be possible to base a proof of the a-theorem on the analyticity and unitarity properties of the 6-point function, but our preliminary study reveals some difficulties.Comment: 41 pages, 5 figure

    Association between proton pump inhibitor therapy and clostridium difficile infection: a contemporary systematic review and meta-analysis.

    Get PDF
    Abstract Introduction Emerging epidemiological evidence suggests that proton pump inhibitor (PPI) acid-suppression therapy is associated with an increased risk of Clostridium difficile infection (CDI). Methods Ovid MEDLINE, EMBASE, ISI Web of Science, and Scopus were searched from 1990 to January 2012 for analytical studies that reported an adjusted effect estimate of the association between PPI use and CDI. We performed random-effect meta-analyses. We used the GRADE framework to interpret the findings. Results We identified 47 eligible citations (37 case-control and 14 cohort studies) with corresponding 51 effect estimates. The pooled OR was 1.65, 95% CI (1.47, 1.85), I2 = 89.9%, with evidence of publication bias suggested by a contour funnel plot. A novel regression based method was used to adjust for publication bias and resulted in an adjusted pooled OR of 1.51 (95% CI, 1.26–1.83). In a speculative analysis that assumes that this association is based on causality, and based on published baseline CDI incidence, the risk of CDI would be very low in the general population taking PPIs with an estimated NNH of 3925 at 1 year. Conclusions In this rigorously conducted systemic review and meta-analysis, we found very low quality evidence (GRADE class) for an association between PPI use and CDI that does not support a cause-effect relationship

    Co-occurrence of outlet impingement syndrome of the shoulder and restricted range of motion in the thoracic spine - a prospective study with ultrasound-based motion analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shoulder complaints, and especially the outlet-impingement syndrome, are a common condition. Among other things, poor posture has been discussed as a cause. A correlation between impingement syndrome and restricted mobility of the thoracic spine (T) has been described earlier, but there has been no motion analysis of the thoracic spine to show these correlations. In the present prospective study, we intended to find out whether there is a significant difference in the thoracic sagittal range of motion (ROM) between patients with a shoulder outlet impingement syndrome and a group of patients who had no shoulder pathology. Secondly, we wanted to clarify whether Ott's sign correlates with ultrasound topometric measurements.</p> <p>Methods</p> <p>Two sex- and age-matched groups (2 × n = 39) underwent a clinical and an ultrasound topometric examination. The postures examined were sitting up straight, sitting in maximal flexion and sitting in maximal extension. The disabilities of the arm, shoulder and hand (DASH) score (obtained by means of a self-assessment questionnaire) and the Constant score were calculated. Lengthening and shortening of the dorsal projections of the spine in functional positions was measured by tape with Ott's sign.</p> <p>Results</p> <p>On examination of the thoracic kyphosis in the erect seated posture there were no significant differences between the two groups (p = 0.66). With ultrasound topometric measurement it was possible to show a significantly restricted segmental mobility of the thoracic spine in the study group compared with the control group (p = 0.01). An in-depth look at the mobility of the subsegments T1-4, T5-8 and T9-12 revealed that differences between the groups in the mobility in the lower two sections of the thoracic spine were significant (T5-8: p = 0.03; T9-12: p = 0.02). The study group had an average Constant score of 35.1 points and the control group, 85.5 (p < 0.001). On the DASH score the patient group reached 34.2 points and the control group, 1.4 (p < 0.001). The results of Ott's sign differed significantly between the two collectives (p = 0.0018), but showed a weak correlation with the ultrasound topometric measurements (study group flexion/extension: r = 0.36/0.43, control group flexion/extension: r = 0.29/0.26).</p> <p>Conclusion</p> <p>The mobility of the thoracic spine should receive more attention in the diagnosis and therapy of patients with shoulder outlet impingement syndrome.</p

    Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

    Get PDF
    Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus

    Expression, localization and polymorphisms of the nuclear receptor PXR in Barrett's esophagus and esophageal adenocarcinoma

    Get PDF
    Background: The continuous exposure of esophageal epithelium to refluxate may induce ectopic expression of bile-responsive genes and contribute to the development of Barrett's esophagus (BE) and esophageal adenocarcinoma. In normal physiology of the gut and liver, the nuclear receptor Pregnane × Receptor (PXR) is an important factor in the detoxification of xenobiotics and bile acid homeostasis. This study aimed to investigate the expression and genetic variation of PXR in reflux esophagitis (RE), Barrett's esophagus (BE) and esophageal adenocarcinoma.Methods: PXR mRNA levels and protein expression were determined in biopsies from patients with adenocarcinoma, BE, or RE, and healthy controls. Esophageal cell lines were stimulated with lithocholic acid and rifampicin. PXR polymorphisms 25385C/T, 7635A/G, and 8055C/T were genotyped in 249 BE patients, 233 RE patients, and 201 controls matched for age and gender.Results: PXR mRNA levels were significantly higher in adenocarcinoma tissue and columnar Barrett's epithelium, compared to squamous epithelium of these BE patients (P < 0.001), and RE patients (P = 0.003). Immunohistochemical staining of PXR showed predominantly cytoplasmic expression in BE tissue, whereas nuclear expression was found in adenocarcinoma tissue. In cell lines, stimulation with lithocholic acid did not increase PXR mRNA levels, but did induce nuclear translocation of PXR protein. Genotyping of the PXR 7635A/G polymorphism revealed that the G allele was significantly more prevalent in BE than in RE or controls (P = 0.037).Conclusions: PXR expresses in BE and adenocarcinoma tissue, and showed nuclear localization in adenocarcinoma tissue. Upon stimulation with lithocholic acid, PXR translocates to the nuclei of OE19 adenocarcinoma cells. Together with the observed association of a PXR polymorphism and BE, this data implies that PXR may have a function in prediction and treatment of esophageal disease

    Refractory dispersion promotes conduction disturbance and arrhythmias in a Scn5a+/− mouse model

    Get PDF
    Accentuated right ventricular (RV) gradients in action potential duration (APD) have been implicated in the arrhythmogenicity observed in Brugada syndrome in studies assuming that ventricular effective refractory periods (VERPs) vary in concert with APDs. The present experiments use a genetically modified mouse model to explore spatial heterogeneities in VERP that in turn might affect conduction velocity, thereby causing arrhythmias. Activation latencies, APDs and VERPs recorded during programmed S1S2 protocols were compared in RV and left ventricular (LV) epicardia and endocardia of Langendorff-perfused wild-type (WT) and Scn5a+/− hearts. Scn5a+/− and WT hearts showed similar patterns of shorter VERPs in RV than LV epicardia, and in epicardia than endocardia. However, Scn5a+/− hearts showed longer VERPs, despite shorter APD90s, than WT in all regions examined. The pro- and anti-arrhythmic agents flecainide and quinidine increased regional VERPs despite respectively decreasing and increasing the corresponding APD90s particularly in Scn5a+/− RV epicardia. In contrast, Scn5a+/− hearts showed greater VERP gradients between neighbouring regions, particularly RV transmural gradients, than WT (9.1 ± 1.1 vs. 5.7 ± 0.5 ms, p < 0.05, n = 12). Flecainide increased (to 21 ± 0.9 ms, p < 0.05, n = 6) but quinidine decreased (to 4.5 ± 0.5 ms, p < 0.05, n = 6) these gradients, particularly across the Scn5a+/− RV. Finally, Scn5a+/− hearts showed greater conduction slowing than WT following S2 stimuli, particularly with flecainide administration. Rather than arrhythmogenesis resulting from increased transmural repolarization gradients in an early, phase 2, reentrant excitation mechanism, the present findings implicate RV VERP gradients in potential reentrant mechanisms involving impulse conduction slowed by partial refractoriness

    Measurement of the plasma levels of antibodies against the polymorphic vaccine candidate apical membrane antigen 1 in a malaria-exposed population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Establishing antibody correlates of protection against malaria in human field studies and clinical trials requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in nature.</p> <p>Methods</p> <p>To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children from a malaria-endemic area in Southern Ghana were determined by indirect ELISA. Titres against four single <it>Pf</it>AMA1 alleles were compared with those against three different allele mixtures presumed to have a wider repertoire of epitope specificities. Associations of antibody levels with the incidence of clinical malaria as well as with previous exposure to parasites were also examined.</p> <p>Results</p> <p>Antibody titres against <it>Pf</it>AMA1 alleles generally increased with age/exposure while antibody specificity for <it>Pf</it>AMA1 variants decreased, implying that younger children (≤ 5 years) elicit a more strain-specific antibody response compared to older children. Antibody titre measurements against the FVO and 3D7 AMA1 alleles gave the best titre estimates as these varied least in pair-wise comparisons with titres against all <it>Pf</it>AMA1 allele mixtures. There was no association between antibody levels against any capture antigen and either clinical malaria incidence or parasite density.</p> <p>Conclusions</p> <p>The current data shows that levels of naturally acquired antigen-specific antibodies, especially in infants and young children, are dependent on the antigenic allele used for measurement. This may be relevant to the interpretation of antibody titre data from measurements against single <it>Pf</it>AMA1 alleles, especially in studies involving infants and young children who have experienced fewer infections.</p
    • …
    corecore