54 research outputs found

    A Snapshot of J. L. Synge

    Full text link
    A brief description is given of the life and influence on relativity theory of Professor J. L. Synge accompanied by some technical examples to illustrate his style of work

    Isotropy of the velocity of light and the Sagnac effect

    Full text link
    In this paper, it is shown, using a geometrical approach, the isotropy of the velocity of light measured in a rotating frame in Minkowski space-time, and it is verified that this result is compatible with the Sagnac effect. Furthermore, we find that this problem can be reduced to the solution of geodesic triangles in a Minkowskian cylinder. A relationship between the problems established on the cylinder and on the Minkowskian plane is obtained through a local isometry.Comment: LaTeX, 13 pages, 3 eps figures; typos corrected, added references, minor changes; to appear in "Relativity in Rotating Frames", ed. G. Rizzi G. and M.L. Ruggiero, Kluwer Academic Publishers, Dordrecht (2003

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    General Relativistic Gravity Gradiometry

    Full text link
    Gravity gradiometry within the framework of the general theory of relativity involves the measurement of the elements of the relativistic tidal matrix, which is theoretically obtained via the projection of the spacetime curvature tensor upon the nonrotating orthonormal tetrad frame of a geodesic observer. The behavior of the measured components of the curvature tensor under Lorentz boosts is briefly described in connection with the existence of certain special tidal directions. Relativistic gravity gradiometry in the exterior gravitational field of a rotating mass is discussed and a gravitomagnetic beat effect along an inclined spherical geodesic orbit is elucidated.Comment: 18 pages, invited contribution to appear in "Relativistic Geodesy: Foundations and Applications", D. Puetzfeld et al. (eds.), 2018; v2: matches version published in: D. Puetzfeld and C. L\"ammerzahl (eds.) "Relativistic Geodesy" (Springer, Cham, 2019), pp. 143-15

    Evaluation of a commercial E(rns)-capture ELISA for detection of BVDV in routine diagnostic cattle serum samples

    Get PDF
    BACKGROUND: Bovine viral diarrhoea virus (BVDV) is an important pathogen in cattle. The ability of the virus to cross the placenta during early pregnancy can result in the birth of persistently infected (PI) calves. These calves shed the virus during their entire lifespan and are the key transmitters of infection. Consequently, identification (and subsequent removal) of PI animals is necessary to rapidly clear infected herds from the virus. The objective of this study was to evaluate the suitability of a commercial E(rns)-capture ELISA, in comparison to the indirect immunoperoxidase test (IPX), for routine diagnostic detection of BVDV within a control programme. In addition, the effect of passive immunity and heat-inactivation of the samples on the performance of the ELISA was studied. METHODS: In the process of virus clearance within the Swedish BVDV control programme, all calves born in infected herds are tested for virus and antibodies. From such samples, sent in for routine diagnostics to SVA, we selected 220 sera collected from 32 beef herds and 29 dairy herds. All sera were tested for BVDV antigen using the E(rns )ELISA, and the results were compared to the results from the IPX used within the routine diagnostics. RESULTS: All 130 samples categorized as virus negative by IPX were tested negative in the ELISA, and all 90 samples categorized as virus positive were tested positive, i.e. the relative sensitivity and specificity of the ELISA was 100% in relation to IPX, and the agreement between the tests was perfect. CONCLUSION: We can conclude that the E(rns )ELISA is a valid alternative that has several advantages compared to IPX. Our results clearly demonstrate that it performs well under Swedish conditions, and that its performance is comparable with the IPX test. It is highly sensitive and specific, can be used for testing of heat-inactivated samples, precolostral testing, and probably to detect PI animals at an earlier age than the IPX

    Motion in classical field theories and the foundations of the self-force problem

    Full text link
    This article serves as a pedagogical introduction to the problem of motion in classical field theories. The primary focus is on self-interaction: How does an object's own field affect its motion? General laws governing the self-force and self-torque are derived using simple, non-perturbative arguments. The relevant concepts are developed gradually by considering motion in a series of increasingly complicated theories. Newtonian gravity is discussed first, then Klein-Gordon theory, electromagnetism, and finally general relativity. Linear and angular momenta as well as centers of mass are defined in each of these cases. Multipole expansions for the force and torque are then derived to all orders for arbitrarily self-interacting extended objects. These expansions are found to be structurally identical to the laws of motion satisfied by extended test bodies, except that all relevant fields are replaced by effective versions which exclude the self-fields in a particular sense. Regularization methods traditionally associated with self-interacting point particles arise as straightforward perturbative limits of these (more fundamental) results. Additionally, generic mechanisms are discussed which dynamically shift --- i.e., renormalize --- the apparent multipole moments associated with self-interacting extended bodies. Although this is primarily a synthesis of earlier work, several new results and interpretations are included as well.Comment: 68 pages, 1 figur

    The motion of point particles in curved spacetime

    Get PDF
    This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The field's action on the particle is difficult to calculate because of its singular nature: the field diverges at the position of the particle. But it is possible to isolate the field's singular part and show that it exerts no force on the particle -- its only effect is to contribute to the particle's inertia. What remains after subtraction is a smooth field that is fully responsible for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of as a free (radiative) field that interacts with the particle; it is this interaction that gives rise to the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors (part I). It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle's word line (part II). It continues with a thorough discussion of Green's functions in curved spacetime (part III). The review concludes with a detailed derivation of each of the three equations of motion (part IV).Comment: LaTeX2e, 116 pages, 10 figures. This is the final version, as it will appear in Living Reviews in Relativit

    The Einstein-Vlasov System/Kinetic Theory

    Full text link
    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein--Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein--Vlasov system. Since then many theorems on global properties of solutions to this system have been established.Comment: Published version http://www.livingreviews.org/lrr-2011-

    Gravitational Lensing from a Spacetime Perspective

    Full text link

    Analogue Gravity

    Full text link
    corecore