279 research outputs found
The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database
BACKGROUND: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. METHODOLOGY/PRINCIPAL FINDINGS: A set of approximately 30K unique sequences (UniSeqs) representing approximately 19K clusters were generated from approximately 98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66% of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD), a feature-enriched version of the Stanford and Longhorn Array Databases. CONCLUSIONS/SIGNIFICANCE: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. Our assembly and clustering results suggest that our porcelain crab EST data set is equally diverse to the much larger EST set generated in the Daphnia pulex genome sequencing project, and thus will be an important resource to the Daphnia research community. Our homology results support the pancrustacea hypothesis and suggest that Malacostraca may be ancestral to Branchiopoda and Hexapoda. Our results also suggest that our cDNA microarrays cover as much of the transcriptome as can reasonably be captured in EST library sequencing approaches, and thus represent a rich resource for studies of environmental genomics
Water induced sediment levitation enhances downslope transport on Mars
On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought
The impact of poor adult health on labor supply in the Russian Federation
We examine the labor supply consequences of poor health in the Russian Federation, a country with exceptionally adverse adult health outcomes. In both baseline OLS models and in models with individual fixed effects, more serious ill-health events, somewhat surprisingly, generally have only weak effects on hours worked. At the same time, their effect on the extensive margin of labor supply is substantial. Moreover, when combining the effects on both the intensive and extensive margins, the effect of illness on hours worked increases considerably for a range of conditions. In addition, for most part of the age distribution, people with poor self-assessed health living in rural areas are less likely to stop working, compared to people living in cities. While there is no conclusive explanation for this finding, it could be related to the existence of certain barriers that prevent people with poor health from withdrawing from the labor force in order to take care of their health
Ferritins: furnishing proteins with iron
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins
Facing Aggression: Cues Differ for Female versus Male Faces
The facial width-to-height ratio (face ratio), is a sexually dimorphic metric associated with actual aggression in men and with observers' judgements of aggression in male faces. Here, we sought to determine if observers' judgements of aggression were associated with the face ratio in female faces. In three studies, participants rated photographs of female and male faces on aggression, femininity, masculinity, attractiveness, and nurturing. In Studies 1 and 2, for female and male faces, judgements of aggression were associated with the face ratio even when other cues in the face related to masculinity were controlled statistically. Nevertheless, correlations between the face ratio and judgements of aggression were smaller for female than for male faces (F1,36 = 7.43, p = 0.01). In Study 1, there was no significant relationship between judgements of femininity and of aggression in female faces. In Study 2, the association between judgements of masculinity and aggression was weaker in female faces than for male faces in Study 1. The weaker association in female faces may be because aggression and masculinity are stereotypically male traits. Thus, in Study 3, observers rated faces on nurturing (a stereotypically female trait) and on femininity. Judgements of nurturing were associated with femininity (positively) and masculinity (negatively) ratings in both female and male faces. In summary, the perception of aggression differs in female versus male faces. The sex difference was not simply because aggression is a gendered construct; the relationships between masculinity/femininity and nurturing were similar for male and female faces even though nurturing is also a gendered construct. Masculinity and femininity ratings are not associated with aggression ratings nor with the face ratio for female faces. In contrast, all four variables are highly inter-correlated in male faces, likely because these cues in male faces serve as “honest signals”
A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale
In this era of complete genomes, our knowledge of neuroanatomical circuitry
remains surprisingly sparse. Such knowledge is however critical both for basic
and clinical research into brain function. Here we advocate for a concerted
effort to fill this gap, through systematic, experimental mapping of neural
circuits at a mesoscopic scale of resolution suitable for comprehensive,
brain-wide coverage, using injections of tracers or viral vectors. We detail
the scientific and medical rationale and briefly review existing knowledge and
experimental techniques. We define a set of desiderata, including brain-wide
coverage; validated and extensible experimental techniques suitable for
standardization and automation; centralized, open access data repository;
compatibility with existing resources, and tractability with current
informatics technology. We discuss a hypothetical but tractable plan for mouse,
additional efforts for the macaque, and technique development for human. We
estimate that the mouse connectivity project could be completed within five
years with a comparatively modest budget.Comment: 41 page
A Freeze Frame View of Vesicular Stomatitis Virus Transcription Defines a Minimal Length of RNA for 5′ Processing
The RNA synthesis machinery of vesicular stomatitis virus (VSV) comprises the genomic RNA encapsidated by the viral nucleocapsid protein (N) and associated with the RNA dependent RNA polymerase, the viral components of which are a large protein (L) and an accessory phosphoprotein (P). The 241 kDa L protein contains all the enzymatic activities necessary for synthesis of the viral mRNAs, including capping, cap methylation and polyadenylation. Those RNA processing reactions are intimately coordinated with nucleotide polymerization such that failure to cap results in termination of transcription and failure to methylate can result in hyper polyadenylation. The mRNA processing reactions thus serve as a critical check point in viral RNA synthesis which may control the synthesis of incorrectly modified RNAs. Here, we report the length at which viral transcripts first gain access to the capping machinery during synthesis. By reconstitution of transcription in vitro with highly purified recombinant polymerase and engineered templates in which we omitted sites for incorporation of UTP, we found that transcripts that were 30-nucleotides in length were uncapped, whereas those that were 31-nucleotides in length contained a cap structure. The minimal RNA length required for mRNA cap addition was also sufficient for methylation since the 31-nucleotide long transcripts were methylated at both ribose-2′-O and guanine-N-7 positions. This work provides insights into the spatial relationship between the active sites for the RNA dependent RNA polymerase and polyribonucleotidyltransferase responsible for capping of the viral RNA. We combine the present findings with our recently described electron microscopic structure of the VSV polymerase and propose a model of how the spatial arrangement of the capping activities of L may influence nucleotide polymerization
Prognostic value of adenosine stress cardiovascular magnetic resonance in patients with low-risk chest pain
<p>Abstract</p> <p>Background</p> <p>Approximately 5% of patients with an acute coronary syndrome are discharged from the emergency room with an erroneous diagnosis of non-cardiac chest pain. Highly accurate non-invasive stress imaging is valuable for assessment of low-risk chest pain patients to prevent these errors. Adenosine stress cardiovascular magnetic resonance (AS-CMR) is an imaging modality with increasing application. The goal of this study was to evaluate the negative prognostic value of AS-CMR among low-risk acute chest pain patients.</p> <p>Methods</p> <p>We studied 103 patients, mean 56.7 ± 12.3 years of age, with chest pain and no electrocardiographic evidence of ischemia and negative cardiac biomarkers of necrosis, who were admitted to the Cardiac Decision Unit of our institution. All patients underwent AS-CMR. A negative AS-CMR was defined as absence of all the following: regional wall motion abnormalities at rest; perfusion defects during stress (adenosine) and rest; and myocardial scar on late gadolinium enhancement images. The patients were followed for a mean of 277 (range 161-462) days. The primary end point was defined as the combination of cardiac death, nonfatal acute myocardial infarction, re-hospitalization for chest pain, obstructive coronary artery disease (>50% coronary stenosis on invasive angiography) and coronary revascularization.</p> <p>Results</p> <p>In 14 patients (13.6%), AS-CMR was positive. The remaining 89 patients (86.4%), who had negative AS-CMR, were discharged. No patient with negative AS-CMR reached the primary end-point during follow-up. The negative predictive value of AS-CMR was 100%.</p> <p>Conclusion</p> <p>AS-CMR holds promise as a useful tool to rule out significant coronary artery disease in patients with low-risk chest pain. Patients with negative AS-CMR have an excellent short and mid-term prognosis.</p
Crystal structure of the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus
The crystal structure of the ferritin from the archaeon, hyperthermophile and anaerobe Pyrococcus furiosus (PfFtn) is presented. While many ferritin structures from bacteria to mammals have been reported, until now only one was available from archaea, the ferritin from Archaeoglobus fulgidus (AfFtn). The PfFtn 24-mer exhibits the 432 point-group symmetry that is characteristic of most ferritins, which suggests that the 23 symmetry found in the previously reported AfFtn is not a common feature of archaeal ferritins. Consequently, the four large pores that were found in AfFtn are not present in PfFtn. The structure has been solved by molecular replacement and refined at 2.75-Å resolution to R = 0.195 and Rfree = 0.247. The ferroxidase center of the aerobically crystallized ferritin contains one iron at site A and shows sites B and C only upon iron or zinc soaking. Electron paramagnetic resonance studies suggest this iron depletion of the native ferroxidase center to be a result of a complexation of iron by the crystallization salt. The extreme thermostability of PfFtn is compared with that of eight structurally similar ferritins and is proposed to originate mostly from the observed high number of intrasubunit hydrogen bonds. A preservation of the monomer fold, rather than the 24-mer assembly, appears to be the most important factor that protects the ferritin from inactivation by heat
- …