1,275 research outputs found

    An advanced procedure for the quantitative risk assessment of offshore installations in explosions

    Get PDF
    Hydrocarbon explosion and fire are typical accidents in the offshore oil and gas industry, sometimes with catastrophic consequences such as casualties, property damage and pollution. Successful engineering and design should meet both functional requirements associated with operability in normal conditions and health, safety, environmental and ergonomics (HSE&E) requirements associated with accidental and extreme conditions. A risk-based approach is best for successful design and engineering to meet HSE&E requirements. This study aimed to develop an advanced procedure for assessing the quantitative risk of offshore installations in explosions. Unlike existing industry practices based on prescriptive rules or qualitative approaches, the proposed procedure uses an entirely probabilistic approach. The procedure starts with probabilistic selection of accident scenarios. As the defining components of risk, both the frequency and consequences associated with selected accident scenarios are computed using the most refined technologies. Probabilistic technology is then applied to establish the relationship between the probability of exceedance and the physical values of the accident. Acceptance risk criteria can be applied to define the nominal values of design and/or level of risk. To validate and demonstrate the applicability of the proposed procedure, an example of its application to topside structures of an FPSO unit subjected to hydrocarbon explosions is detailed. The conclusions and insights obtained are documented

    Nonlinear structural behaviour of membrane-type LNG carrier cargo containment systems under impact pressure loads at −163 °C

    Get PDF
    This paper is a sequel to the paper dealing with quasi-static responses previously studied by the authors. The structural failure of membrane-type liquefied natural gas carrier (LNGC) cargo tank is an important issue in the construction of ultra-large an LNG carrier. However, quasi-static analysis to investigate the structural failure is difficult and tends to give conservative results. To compensate the weak points of the quasi-static analysis, a procedure for the dynamic analysis was developed to assess the structural failure using nonlinear finite element method. A nonlinear finite element method is employed to model metal membrane, insulation and surface contacts. Various element formulations are tested at different points along a corrugated surface to optimise the accuracy of the model with respect to computation time. Material properties used in the model are calibrated based on experimentally measured values at cryogenic conditions (−163 °C). The model is used to predict the structural failure under different impact pressure loads and loading patterns. It is concluded that the structural damage is less likely to occur under 30 bar

    Chemically encoded self-organized quantum chain supracrystals with exceptional charge and ion transport properties

    Get PDF
    Artificially grown superstructures from small building blocks is an intriguing subject in ‘bottom-up’ molecular science and nanotechnology. Although discrete nanoparticles with different morphologies and physicochemical properties are readily produced, assembly them into higher-order structure amenable to practical applications is still a considerable challenge. This report introduces a stepwise heterogeneous approach for coupling colloidal quantum dots (QDs) synthesis with self-organization to directly generate quantum chains (QCs). By using vulcanized sulfur precursors, QDs are interdigitated into microscale chainlike supracrystals associated with oleylamine and oleic acid as structure directing agents. The cooperative nature of the QD growth and assembly have been extended to fabricate binary (PbS) and ternary metal chalcogenides (CuInS2) QC superstructures over a range of length scales. In addition, enhanced ion and charge transfer performance have been demonstrated which are determined to originate from the minimum interparticle distance and nearly bare nanocrystal surface. The process reported here is general and can be readily extended to the production of many other metal chalcogenide QD superstructures for energy storage applications

    Strength assessment of stiffened blast walls in offshore installations under explosions

    Get PDF
    Offshore installations are exposed to hydrocarbon explosions and/or fire accidents. Especially, explosions lead to serious damages to human, safety, and environment. To minimise and prevent the damage from explosions, blast walls are generally installed in oil and gas production structures. Typical blast walls are classified into flat, corrugated, and stiffened types. Among them, corrugated blast walls are frequently used for reasons such as construction, cost, and energy absorption. However, it has been known that a corrugated type of blast wall buckles between the web and flange under the explosion loads, and loses its stiffness. It means that the buckling phenomenon of a blast wall is closely related to the structural strength. This study investigates on the structural characteristics of a blast wall under quasi-static and dynamic (explosion) loads with or without a flat-plated stiffener. Finally, it can be concluded that the flat type of stiffeners are located at the buckling region to delay the buckling and improve the strength of blast walls

    High Performance Electrocatalysts Based on Pt Nanoarchitecture for Fuel Cell Applications

    Get PDF
    Fuel cells, converting chemical energy from fuels into electricity directly without the need for combustion, are promising energy conversion devices for their potential applications as environmentally friendly, energy efficient power sources. However, to take fuel cell technology forward towards commercialization, we need to achieve further improvements in electrocatalyst technology, which can play an extremely important role in essentially determining cost-effectiveness, performance, and durability. In particular, platinum- (Pt-) based electrocatalyst approaches have been extensively investigated and actively pursued to meet those demands as an ideal fuel cell catalyst due to their most outstanding activity for both cathode oxygen reduction reactions and anode fuel oxidation reactions. In this review, we will address important issues and recent progress in the development of Pt-based catalysts, their synthesis, and characterization. We will also review snapshots of research that are focused on essential dynamics aspects of electrocatalytic reactions, such as the shape effects on the catalytic activity of Pt-based nanostructures, the relationships between structural morphology of Pt-based nanostructures and electrochemical reactions on both cathode and anode electrodes, and the effects of composition and electronic structure of Pt-based catalysts on electrochemical reaction properties of fuel cells.</jats:p

    Field effect transistors and phototransistors based upon p-type solution-processed PbS nanowires.

    Get PDF
    We demonstrate the fabrication of solution processed highly crystalline p-type PbS nanowires via the oriented attachment of nanoparticles. The analysis of single nanowire field effect transistor (FET) devices revealed a hole conduction behaviour with average mobilities greater than 30 cm2 V-1 s-1, which is an order of magnitude higher than that reported to date for p-type PbS colloidal nanowires. We have investigated the response of the FETs to near-infrared light excitation and show herein that the nanowires exhibited gate-dependent photo-conductivities, enabling us to tune the device performances. The responsivity was found to be greater than 104 A W-1 together with a detectivity of 1013 Jones, which benefits from a photogating effect occurring at negative gate voltages. These encouraging detection parameters are accompanied by relatively short switching times of 15 ms at positive gate voltages, resulting from a combination of the standard photoconduction and the high crystallinity of the nanowires. Collectively, these results indicate that solution-processed PbS nanowires are promising nanomaterials for infrared photodetectors as well as p-type nanowire FETs

    Inorganic-ligand exchanging time effect in PbS quantum dot solar cell

    Get PDF
    We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbS surface rather hinder high photovoltaic performance of the CQD solar cell

    A practical method to determine the dynamic fracture strain for the nonlinear finite element analysis of structural crashworthiness in ship–ship collisions

    Get PDF
    Ship–ship collisions continue to occur regardless of efforts to prevent them. The collisions involve highly nonlinear characteristics associated with structural crashworthiness, including crushing and fracture as well as buckling and plastic collapse. When applying nonlinear finite element analysis (NLFEA) to solve these problems, a reliable critical fracture strain accounting for strain-rate effects due to collision speed must be implemented. This study proposes a practical method to estimate the dynamic fracture strain to be used for the structural crashworthiness analysis associated with the collisions. For this purpose, the strain-rate characteristics in struck ship were investigated by NLFEA, in which the striking vessel was assigned various velocities in the range of practical ship speeds. Based on computations, an empirical formula was developed to calculate the strain rate at a given collision speed, allowing for a practical estimation of the dynamic fracture strain. The formula is validated by a comparison with experiment

    Growth of quantum dot coated core-shell anisotropic nanowires for improved thermal and electronic transport

    Get PDF
    Anisotropic nanowires are promising candidates for electronic thermal management due to their unique electrical and thermal properties.However, eco-friendly solution-processed nanomaterials with an elaborate morphology and microstructure for modulating thermal andcharge transfer are still a considerable challenge. Herein, we present a simple but effective approach for synthesizing pseudo core-shell nano-wires through quantum dot (QD)-like nanostructure coating (p-NW@QD) to generate exceptional electron-phonon transport properties.With the assistance of diphenyl ether as a coordination solvent, high crystallinity lead sulfide NWs can be fabricated with a large aspect ratiotogether with uniform QD coating. Thisp-NW@QD exhibits high electronic mobility (30.65 cm2/Vs) as well as a diameter independent lowthermal conductivity (1.5361 W/m K). Direct charge/heat carrier flow measurements and computational simulations demonstrate that theunusual electrical and thermal transport phenomenon is strongly dependent on the fast charge transport through the QD shell, and a slowphonon migration across the Umklapp process dominated NW cores. These findings indicate a significant step toward colloidal synthesisnanostructures for future high-performance nanoelectronics and thermal energy devices
    • …
    corecore