128 research outputs found

    Body Size, Growth and Life Span: Implications for the Polewards Range Shift of Octopus tetricus in South- Eastern Australia

    Get PDF
    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters

    The endemic and endangered Maugean Skate (Zearaja maugeana) exhibits short-term severe hypoxia tolerance

    Get PDF
    The endangered and range-restricted Maugean skate (Zearaja maugeana) is subjected to large environmental variability coupled with anthropogenic stressors in its endemic habitat, Macquarie Harbour, Tasmania. However, little is known about the basic biology/physiology of this skate, or how it may respond to future environmental challenges predicted from climate change and/or increases in human activities such as aquaculture. These skate live at a preferred depth of 5–15 m where the dissolved oxygen (DO) levels are moderate (~55% air saturation), but can be found in areas of the Harbour where DO can range from 100% saturation to anoxia. Given that the water at their preferred depth is already hypoxic, we sought to investigate their response to further decreases in DO that may arise from potential increases in anthropogenic stress. We measured oxygen consumption, haematological parameters, tissue–enzyme capacity and heat shock protein (HSP) levels in skate exposed to 55% dissolved O2 saturation (control) and 20% dissolved O2 saturation (hypoxic) for 48 h. We conclude that the Maugean skate appears to be an oxyconformer, with a decrease in the rate of O2 consumption with increasing hypoxia. Increases in blood glucose and lactate at 20% O2 suggest that skate are relying more on anaerobic metabolism to tolerate periods of very low oxygen. Despite these metabolic shifts, there was no difference in HSP70 levels between groups, suggesting this short-term exposure did not elicit a cellular stress response. The metabolic state of the skate suggests that low oxygen stress for longer periods of time (i.e. >48 h) may not be tolerable and could potentially result in loss of habitat or shifts in their preferred habitat. Given its endemic distribution and limited life-history information, it will be critical to understand its tolerance to environmental challenges to create robust conservation strategies

    An examination of variable growth rates in the tropical squid Sepioteuthis lessoniana: a whole animal and reductionist approach

    Get PDF
    Squids typically demonstrate considerable plasticity in individual growth rates. However, it is not known if individuals growing at different rates also differ at lower levels of organisation. We wished to determine if Seploteuthis lessoniana individuals that were larger than predicted for their age dlffered in their digestive gland and mantle muscle tissue proximal composition or mantle muscle structure, compared with individuals that were smaller for their age than predicted. The residual, the difference between the observed size-at-age and that predicted by the growth equation, was used as a measure of the difference in an individual's lifetime growth from the population average. Individual squid varied considerably in their size-at-age, with juveniles showing less variation than adults. Juverules had greater concentrations of lipid in their muscle tissue, perhaps due to an emphasis on storing energy reserves in this critical period of thelr life. Differences in biochemical constituents in both the digestive gland and muscle tissue were not related to the size-at-age of individuals, despite biochemical make-up being the lowest organisational level of growth. This may be due to whole animal growth and changes in biochemical composition occurring on different time scales. There was no relationship between the size-at-age of individuals and average mantle muscle fibre size. A strong relationship, however, existed between the size of mantle muscle blocks and the size-at-age of individuals for both juvenile and adult individuals, suggesting that larger muscle blocks are related to both body size and faster individual growth rates. This study demonstrates a clear relationship between mantle muscle structure and growth and the size-at-age of S. lessoniana individuals

    Swimming strategies and energetics of endothermic white sharks during foraging

    Get PDF
    Some fishes and sea turtles are distinct from ectotherms by having elevated core body temperatures and metabolic rates. Quantifying the energetics and activity of the regionally endothermic species will help us understand how a fundamental biophysical process (i.e. temperature-dependent metabolism) shapes animal ecology; however, such information is limited owing to difficulties in studying these large, highly active animals. White sharks, Carcharodon carcharias, are the largest fish with regional endothermy, and potentially among the most energy-demanding fishes. Here, we deployed multi-sensor loggers on eight white sharks aggregating near colonies of long-nosed fur seals, Arctocephalus forsteri, off the Neptune Islands, Australia. Simultaneous measurements of depth, swim speed (a proxy for swimming metabolic rate) and body acceleration (indicating when sharks exhibited energy-efficient gliding behaviour) revealed their fine-scale swimming behaviour and allowed us to estimate their energy expenditure. Sharks repeatedly dived (mean swimming depth, 29 m) and swam at the surface between deep dives (maximum depth, 108 m). Modal swim speeds (0.80–1.35 m s−1) were slower than the estimated speeds that minimize cost of transport (1.3–1.9 m s−1), a pattern analogous to a ‘sit-and-wait’ strategy for a perpetually swimming species. All but one shark employed unpowered gliding during descents, rendering deep (>50 m) dives 29% less costly than surface swimming, which may incur additional wave drag. We suggest that these behavioural strategies may help sharks to maximize net energy gains by reducing swimming cost while increasing encounter rates with fast-swimming seals

    Physiological mechanisms linking cold acclimation and the poleward distribution limit of a range-extending marine fish

    Get PDF
    Extensions of species’ geographical distributions, or range extensions, are among the primary ecological responses to climate change in the oceans. Considerable variation across the rates at which species’ ranges change with temperature hinders our ability to forecast range extensions based on climate data alone. To better manage the consequences of ongoing and future range extensions for global marine biodiversity, more information is needed on the biological mechanisms that link temperatures to range limits. This is especially important at understudied, low relative temperatures relevant to poleward range extensions, which appear to outpace warm range edge contractions four times over. Here, we capitalized on the ongoing range extension of a teleost predator, the Australasian snapper Chrysophrys auratus, to examine multiple measures of ecologically relevant physiological performance at the population’s poleward range extension front. Swim tunnel respirometry was used to determine how mid-range and poleward range edge winter acclimation temperatures affect metabolic rate, aerobic scope, swimming performance and efficiency and recovery from exercise. Relative to ‘optimal’ mid-range temperature acclimation, subsequent range edge minimum temperature acclimation resulted in absolute aerobic scope decreasing while factorial aerobic scope increased; efficiency of swimming increased while maximum sustainable swimming speed decreased; and recovery from exercise required a longer duration despite lower oxygen payback. Cold-acclimated swimming faster than 0.9 body lengths sec−1 required a greater proportion of aerobic scope despite decreased cost of transport. Reduced aerobic scope did not account for declines in recovery and lower maximum sustainable swimming speed. These results suggest that while performances decline at range edge minimum temperatures, cold-acclimated snapper are optimized for energy savings and range edge limitation may arise from suboptimal temperature exposure throughout the year rather than acute minimum temperature exposure. We propose incorporating performance data with in situ behaviour and environmental data in bioenergetic models to better understand how thermal tolerance determines range limits

    Motivation and harvesting behaviour of fishers in a specialized fishery targeting a top predator species at risk

    Get PDF
    Effective management of wildlife resources depends on understanding and cooperating with the human users of the resource, particularly as policies may be rejected if user satisfactions are not met. In Australia, recreational anglers can legally target a migratory top predator, the shortfin mako shark Isurus oxyrinchus, which is also a species at risk. It is assumed that most of the sharks are released and population remains minimally impacted; yet, the actual release rate of this species is unknown and little information is available about anglers that participate in this fishery. Fishing motivations and behaviours were ascertained by a web survey of recreational shark anglers from three south‐eastern Australian states. Respondents reported that ~70% of the captured makos were released, with significant geographic variation in release rates between states. Most anglers reported being motivated by the catch‐based objectives, the thrills and challenges, rather than harvest‐based motivations. However, there were significant differences in harvesting motivation among states. This could be attributed to the varying value assigned to shortfin mako as a sport fish and table fish among regions. Additionally, higher rates of release among anglers from New South Wales may be linked to increased opportunity for resource substitution (i.e. greater diversity of game fish species) and established norms driven by current catch‐and‐release fisheries in that region. Increased participation in catch‐and‐release fishing may be achieved by establishing behavioural norms by the provision of more desirable incentives to release sharks during fishing competitions. Data on regional variation in release rates yield important information for managers to target specialized fishers to incentivize catch‐and‐release fishing with an objective of changing behaviour. Many anglers understand that sharks are important to marine ecosystems and messaging may be important to deliver effective management given that most anglers are motivated by catch‐based objectives even though many enjoy harvesting makos. Information on natural resource user motivations and satisfactions, such as studied here, has the potential to guide management actions and the ways in which managers interact with resource users

    Interacting with wildlife tourism increases activity of white sharks

    Get PDF
    Anthropogenic activities are dramatically changing marine ecosystems. Wildlife tourism is one of the fastest growing sectors of the tourism industry and has the potential to modify the natural environment and behaviour of the species it targets. Here, we used a novel method to assess the effects of wildlife tourism on the activity of white sharks (Carcharodon carcharias). High frequency three-axis acceleration loggers were deployed on ten white sharks for a total of ~9 days. A combination of multivariate and univariate analysis revealed that the increased number of strong accelerations and vertical movements when sharks are interacting with cage-diving operators result in an overall dynamic body acceleration (ODBA) ~61% higher compared with other times when sharks are present in the area where cage-diving occurs. Since ODBA is considered a proxy of metabolic rate, interacting with cage-divers is probably more costly than are normal behaviours of white sharks at the Neptune Islands. However, the overall impact of cage-diving might be small if interactions with individual sharks are infrequent. This study suggests wildlife tourism changes the instantaneous activity levels of white sharks, and calls for an understanding of the frequency of shark-tourism interactions to appreciate the net impact of ecotourism on this species’ fitness

    Population genetic signatures of a climate change driven marine range extension

    Get PDF
    Shifts in species distribution, or ‘range shifts’, are one of the most commonly documented responses to ocean warming, with important consequences for the function and structure of ecosystems, and for socio-economic activities. Understanding the genetic signatures of range shifts can help build our knowledge of the capacity of species to establish and persist in colonised areas. Here, seven microsatellite loci were used to examine the population connectivity, genetic structure and diversity of Octopus tetricus, which has extended its distribution several hundred kilometres polewards associated with the southwards extension of the warm East Australian Current along south-eastern Australia. The historical distribution and the range extension zones had significant genetic differences but levels of genetic diversity were comparable. The population in the range extension zone was sub-structured, contained relatively high levels of self-recruitment and was sourced by migrants from along the entire geographic distribution. Genetic bottlenecks and changes in population size were detected throughout the range extension axis. Persistent gene flow from throughout the historical zone and moderate genetic diversity may buffer the genetic bottlenecks and favour the range extension of O. tetricus. These characteristics may aid adaptation, establishment, and long-term persistence of the population in the range extension zone

    Application of environmental DNA to detect an endangered marine skate species in the wild

    Get PDF
    Environmental DNA (eDNA) techniques have only recently been applied in the marine environment to detect the presence of marine species. Species-specific primers and probes were designed to detect the eDNA of the endangered Maugean skate (Zearaja maugeana) from as little as 1 L of water collected at depth (10-15 m) in Macquarie Harbour (MH), Tasmania. The identity of the eDNA was confirmed as Z. maugeana by sequencing the qPCR products and aligning these with the target sequence for a 100% match. This result has validated the use of this eDNA technique for detecting a rare species, Z. maugeana, in the wild. Being able to investigate the presence, and possibly the abundance, of Z. maugeana in MH and Bathurst harbour (BH), would be addressing a conservation imperative for the endangered Z. maugeana. For future application of this technique in the field, the rate of decay was determined for Z. maugeana eDNA under ambient dissolved oxygen (DO) levels (55% saturation) and lower DO (20% saturation) levels, revealing that the eDNA can be detected for 4 and 16 hours respectively, after which eDNA concentration drops below the detection threshold of the assay. With the rate of decay being influenced by starting eDNA concentrations, it is recommended that samples be filtered as soon as possible after collection to minimize further loss of eDNA prior to and during sample processing

    Response of Atlantic salmon Salmo salar to temperature and dissolved oxygen extremes established using animal-borne environmental sensors

    Get PDF
    Understanding how aquatic species respond to extremes of DO and temperature is crucial for determining how they will be affected by climate change, which is predicted to increasingly expose them to levels beyond their optima. In this study we used novel animal-borne DO, temperature and depth sensors to determine the effect of extremes of DO and temperature on the vertical habitat use of Atlantic salmon Salmo salar in aquaculture cages. Salmon showed a preference for temperatures around 16.5 to 17.5 °C, however, selection of preferred temperatures was trumped by active avoidance of low DO (20.1 °C), which led to a considerable contraction in the available vertical habitat. Despite their avoidance behavior, fish spent a large amount of time in waters with suboptimal DO (<60% saturation). These results show that vertical habitat contraction could likely be a significant consequence of climate change if the reduction in DO outpaces the increase in hypoxia tolerance through local adaptation. They furthermore highlight that site-specific environmental conditions and stock-specific tolerance thresholds may need to be considered when determining stocking densities
    • 

    corecore