108 research outputs found
Chlamydial conjunctivitis presenting as pre septal cellulitis
Chlamydia conjuctivitis results from infection by chlamydia trachomatis, the commonest treatable sexually transmitted infection in Europe. Its clinical manifestations involve the conjunctiva and the cornea. The inflammation under the upper eyelid may be sufficient to present as ptosis, however previously it has not been documented to cause a preseptal cellulitis. We present such a case. A 15-year-old girl was diagnosed with a left viral conjunctivitis. Five days later, she returned with marked oedema of the left upper and lower lids accompanied by erythema. The tarsal conjunctiva revealed follicles and large papillae and extra ocular movements revealed discomfort on elevation. A secondary diagnosis of bacterial pre septal cellulitis was made and the treatment was changed a broad spectrum oral antibiotic. On review at two days, the patient now complained of a large amount of purulent discharge in association with the marked pre septal swelling. As previous bacteriology and virology had been negative, the patient was re swabbed for chlamydia. This proved positive and her symptoms completely resolved following administration of Azithromycin. In this particular case recognition of the pathogen is important to alert the patient to the likelihood of unknown genital infestation. In all cases of positive culture, the patient should be counselled to attend a genitourinary clinic and to alert any sexual partners to the need to do likewise
How Grandparents Matter: Support for the Cooperative Breeding Hypothesis in a Contemporary Dutch Population
Low birth rates in developed societies reflect women’s difficulties in combining work and motherhood. While demographic research has focused on the role of formal childcare in easing this dilemma, evolutionary theory points to the importance of kin. The cooperative breeding hypothesis states that the wider kin group has facilitated women’s reproduction during our evolutionary history. This mechanism has been demonstrated in pre-industrial societies, but there is no direct evidence of beneficial effects of kin’s support on parents’ reproduction in modern societies. Using three-generation longitudinal data anchored in a sample of grandparents aged 55 and over in 1992 in the Netherlands, we show that childcare support from grandparents increases the probability that parents have additional children in the next 8 to 10 years. Grandparental childcare provided to a nephew or niece of childless children did not significantly increase the probability that those children started a family. These results suggest that childcare support by grandparents can enhance their children’s reproductive success in modern societies and is an important factor in people’s fertility decisions, along with the availability of formal childcare
The Perceived Benefits of Height: Strength, Dominance, Social Concern, and Knowledge among Bolivian Native Amazonians
Research in industrial countries suggests that, with no other knowledge about a person, positive traits are attributed to taller people and correspondingly, that taller people have slightly better socioeconomic status (SES). However, research in some non-industrialized contexts has shown no correlation or even negative correlations between height and socioeconomic outcomes. It remains unclear whether positive traits remain attributed to taller people in such contexts. To address this question, here we report the results of a study in a foraging-farming society of native Amazonians in Bolivia (Tsimane’)–a group in which we have previously shown little association between height and socioeconomic outcomes. We showed 24 photographs of pairs of Tsimane’ women, men, boys, and girls to 40 women and 40 men >16 years of age. We presented four behavioral scenarios to each participant and asked them to point to the person in the photograph with greater strength, dominance, social concern, or knowledge. The pairs in the photographs were of the same sex and age, but one person was shorter. Tsimane’ women and men attributed greater strength, dominance, and knowledge to taller girls and boys, but they did not attribute most positive traits to taller adults, except for strength, and more social concern only when women assessed other women in the photographs. These results raise a puzzle: why would Tsimane’ attribute positive traits to tall children, but not tall adults? We propose three potential explanations: adults’ expectations about the more market integrated society in which their children will grow up, height as a signal of good child health, and children’s greater variation in the traits assessed corresponding to maturational stages
Sex Ratio at Birth and Mortality Rates Are Negatively Related in Humans
Evolutionary theory posits that resource availability and parental investment ability could signal offspring sex selection, in order to maximize reproductive returns. Non-human studies have provided evidence for this phenomenon, and maternal condition around the time of conception has been identified as most important factor that influence offspring sex selection. However, studies on humans have reported inconsistent results, mostly due to use of disparate measures as indicators of maternal condition. In the present study, the cross-cultural differences in human natal sex ratio were analyzed with respect to indirect measures of condition namely, life expectancy and mortality rate. Multiple regression modeling suggested that mortality rates have distinct predictive power independent of cross-cultural differences in fertility, wealth and latitude that were earlier shown to predict sex ratio at birth. These findings suggest that sex ratio variation in humans may relate to differences in parental and environmental conditions
Gabapentin for the hemodynamic response to intubation: systematic review and meta-analysis
Purpose
Endotracheal intubation is the gold standard for securing the airway before surgery. Nevertheless, this procedure can produce an activation of the sympathetic nervous system and result in a hemodynamic response which, in high-risk patients, may lead to cardiovascular instability and myocardial ischemia. The aim of this review was to evaluate whether gabapentin can attenuate this response and whether such an attenuation could translate into reduced myocardial ischemia and mortality.
Source
We searched MEDLINE®, EMBASE™, CINAHL, AMED, and unpublished clinical trial databases for randomized-controlled trials that compared gabapentin with control, fentanyl, clonidine, or beta blockers for attenuating the hemodynamic response to intubation. Primary outcomes were mortality, myocardial infarction, and myocardial ischemia. Secondary outcomes were hemodynamic changes following intubation.
Principal findings
We included 29 randomized trials with only two studies at low risk of bias. No data were provided for the primary outcomes and no studies included high-risk patients. The use of gabapentin resulted in attenuation in the rise in mean arterial blood pressure [mean difference (MD), −12 mmHg; 95% confidence interval (CI), −17 to −8] and heart rate (MD, −8 beats·min−1; 95% CI, −11 to −5) one minute after intubation. Gabapentin also reduced the risk of hypertension or tachycardia requiring treatment (risk ratio, 0.15; 95% CI, 0.05 to 0.48). Data were limited on adverse hemodynamic events such as bradycardia and hypotension.
Conclusion
It remains unknown whether gabapentin improves clinically relevant outcomes such as death and myocardial infarction since studies failed to report on these. Nevertheless, gabapentin attenuated increases in heart rate and blood pressure following intubation when compared with the control group. Even so, the studies included in this review were at potential risk of bias. Moreover, they did not include high-risk patients or report adverse hemodynamic outcomes. Future studies are required to address these limitations
Reverse Engineering of the Spindle Assembly Checkpoint
The Spindle Assembly Checkpoint (SAC) is an intracellular mechanism that ensures proper chromosome segregation. By inhibiting Cdc20, a co-factor of the Anaphase Promoting Complex (APC), the checkpoint arrests the cell cycle until all chromosomes are properly attached to the mitotic spindle. Inhibition of Cdc20 is mediated by a conserved network of interacting proteins. The individual functions of these proteins are well characterized, but understanding of their integrated function is still rudimentary. We here describe our attempts to reverse-engineer the SAC network based on gene deletion phenotypes. We begun by formulating a general model of the SAC which enables us to predict the rate of chromosomal missegregation for any putative set of interactions between the SAC proteins. Next the missegregation rates of seven yeast strains are measured in response to the deletion of one or two checkpoint proteins. Finally, we searched for the set of interactions that correctly predicted the observed missegregation rates of all deletion mutants. Remarkably, although based on only seven phenotypes, the consistent network we obtained successfully reproduces many of the known properties of the SAC. Further insights provided by our analysis are discussed
Fitness Consequences of Advanced Ancestral Age over Three Generations in Humans
A rapid rise in age at parenthood in contemporary societies has increased interest in reports of higher prevalence of de novo mutations and health problems in individuals with older fathers, but the fitness consequences of such age effects over several generations remain untested. Here, we use extensive pedigree data on seven pre-industrial Finnish populations to show how the ages of ancestors for up to three generations are associated with fitness traits. Individuals whose fathers, grandfathers and great-grandfathers fathered their lineage on average under age 30 were ~13% more likely to survive to adulthood than those whose ancestors fathered their lineage at over 40 years. In addition, females had a lower probability of marriage if their male ancestors were older. These findings are consistent with an increase of the number of accumulated de novo mutations with male age, suggesting that deleterious mutations acquired from recent ancestors may be a substantial burden to fitness in humans. However, possible non-mutational explanations for the observed associations are also discussed
A quantitative systems view of the spindle assembly checkpoint
The idle assembly checkpoint acts to delay chromosome segregation until all duplicated sister chromatids are captured by the mitotic spindle. This pathway ensures that each daughter cell receives a complete copy of the genome. The high fidelity and robustness of this process have made it a subject of intense study in both the experimental and computational realms. A significant number of checkpoint proteins have been identified but how they orchestrate the communication between local spindle attachment and global cytoplasmic signalling to delay segregation is not yet understood. Here, we propose a systems view of the spindle assembly checkpoint to focus attention on the key regulators of the dynamics of this pathway. These regulators in turn have been the subject of detailed cellular measurements and computational modelling to connect molecular function to the dynamics of spindle assembly checkpoint signalling. A review of these efforts reveals the insights provided by such approaches and underscores the need for further interdisciplinary studies to reveal in full the quantitative underpinnings of this cellular control pathway
On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life
- …